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Research Summary

This AASERT award augmented and provided additional support for the parent grant entitled
“Quantum Cellular Automata” (QCA), ONR grant no. N00014-93-1-1084. Initially, the main
focus of this research was the study of Coulombic coupling effects in semiconductor
nanostructures for applications in quantum cellular automata. We considered both III-V and Si-
based semiconductor systems. In later years, the AASERT award supported work on QCA
realizations in Coulomb-blockade metal-dot systems, which were successful in demonstrating
the basic QCA switching operation. This latter work has contributed in large measure to the
visibility and success of the QCA concept. Recently, AASERT-supported students have explored
the applicability of QCA systems for quantum computing.

Due to the group nature of our research effort at Notre Dame, the continuity of the proposed
student research training was assured well beyond the expiration date of the parent award in ‘96.
In fact, this AASERT grant has seen several no-cost extensions since grant support, scholarships,
and fellowships were also available for the AASERT-sponsored domestic students, which
allowed us to provide research training for a large number of students over quite a few
years.

AASERT-sponsored Graduate Students

* Douglas Tougaw

* Henry Harbury

* Brad Campbell

* Greg Bazan

* Minhan Chen

* John Timmler

* Islamshah Amlani
* Christopher Harris
* Alan Hall
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Research Description

* Modelling of quantum dots in the few-electron regime. The purpose of our numerical
modelling was to support the experimental effort by providing the design parameters for the
experimental realization of semiconductor QCA quantum-dot cells. to this end, we have studied
field-confined quantum dots in the few electron regime. We have explored the feasibility of several
top-gate configurations and we have studied their capability of producing crisp confining
potentials. The usual mode is to employ top gates with a negative bias, which repel the carriers in
the two-dimensional electron gas underneath. Quantum wires and quantum dots are realized in the

“areas below metal-free regions on the surface, which expose the semiconductor to the ambient
dielectric. Our modelling shows that for typical dimensions and structural parameters, it will be
very difficult to use negative gate biases to tune quantum dots which are occupied by a small
number of electrons. Even for extremely small separations of the 2DEG from the surface, say 40
nm or so, the confining electrostatic potential is still quite gradual. It will also be very difficult to
realize top metal gates with openings which are on the order of only a few tens of nanometers. In
addition, the geometrical features of the metal opening are several times larger than the induced
dot underneath. This makes it very hard, if not impossible, to fabricate a QCA cell, which contains
several closely-spaced dots, by utilizing negative top-gate biasing. An alternate approach is to use
positive top-gate biasing. In this scheme, one starts out with a structure which does not possess a
two-dimensional electron gas without biasing. A positive bias applied to the metal on the top
surface may then induce electrons underneath. Our modelling of this accumulation mode shows
that geometrical considerations allow the realization of closely-spaced dots. The most promising
approach which we have been able to identify based on our modelling work is a combined
depletion mode (negative top-gate bias) and accumulation mode (positive top-gate bias). We
envision a top-gate geometry which consists of a rather large opening (negative bias) in which
several metal dots (positive bias) are placed. The negative gate just barely depletes the 2DEG, and
the carriers may be brought back with a rather small positive bias. Our modeling shows that QCA
cell may be realized by this combined biasing approach. We have investigated both the III-V and
the Si-SiO, material systems. Our modeling indicates that the silicon system is, in principle,
particularly well suited for the realization of gate-confined quantum dots due to the extremely thin
oxide layer, which yields very crisp confining potentials.

+  QCA realization in III-V materials. We performed measurements on an AlGaAs/GaAs
double quantum dot structure, where dots were separated by an opaque barrier and each dot
conductance was measured independently and simultaneously. We measured the Coulomb
blockade oscillations (CBOs) for each dot when the structure was configured for one and two dots.
When configured as a single-dot device, we swept the backgate and observed different CBO
periods for each dot measured independently, implying dots of different sizes. When the device
was configured for two dots, we observed strongly modulated CBOs in the larger dot while CBOs
in the smaller dot exhibit almost no influence due to the changing charge of the larger dot. From
this experiment, we had realized a charge detection scheme where we observed strong coupling in
the detector signal in addition to the detector exhibiting minimal effect on the dot being measured.
For an implementation of quantum-dot cellular automata (QCA), (1) cells must couple capacitively
and (2) one must be able to detect electron occupation of a quantum dot within a cell. With this
investigation, we demonstrated these two key components required for QCA in AlGaAs/GaAs
materials.
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« Novel technique for nanostructure fabrication in silicon. We have also investigated a novel
method for fabricating nanostructures based on the interaction of an electron beam with the metal-
oxide-semiconductor material system. The electron beam produced a stable charge near the oxide-
silicon interface which modulated the surface potential creating a quasi-one-dimensional potential
valley. Electrical transport measurements conducted on the post-irradiated MOSFETs revealed
structure in the conductance which was not present in an unexposed device, indicating that Q1D
structures can be created directly in the gate of a St MOSFET. We have not continued to pursue
this technology, although nothing has indicated that it will not work for our applications.

« Study of Coulomb coupling for QCA realizations in metallic systems. We investigated of
the application of metallic tunnel structures for the realization of QCA cells. Our initial work was
aimed at an experimental investigation of the Coulomb interaction between normal metal (Au/Ti)
and superconducting (AlO,) 2D-films separated by an insulating (Al,O3) layer. We reported the
first observation of supercurrent drag by injecting a drive current into a normal metal film and
measuring the open circuit voltage due to drag in a superconducting film. The drag was observed
at temperatures close to Tc, with the ratio of the drag current to the drive current as high as about
1x10™°. Our results were discussed in terms of a model of Coulomb mutual scattering between the
normal electrons in the drive wire and the superelectrons in the drag wire. The significance of this
work to QCA’’s lies in the fact that it required the fabrication of high-quality Al,O; films grown in
situ on Al wires. This technology was later refined to the point of insertion in high quality tunnel
junctions used in numerous subsequent studies of QCA’s in metallic dots.

» Fabrication and characterization of Coulomb-blockade metal-dot structures. The
experimental work is based on aluminum islands and aluminum tunnel junctions, fabricated on an
oxidized silicon wafer. The fabrication uses standard electron-beam lithography and dual shadow
evaporation to form the metallic islands and tunnel junctions. The area of the tunnel junctions is an
important quantity since this dominates island capacitance, which determines the charging energy
of the island, and thus the operating temperature of the device. For our devices, the typical
dimensions are 60 by 60 nm, giving a junction capacitance of 400 aF. The QCA device is mounted
on the cold finger of a dilution refrigerator that has a base temperature of 10 mK. We measure the
conductance through various parts of the circuit using standard ac lock-in techniques. A magnetic
field of 1T is applied to suppress the superconductivity of the aluminum metal.

e Demonstration of QCA behavior in Coulomb-blockade metal-dot structures. Using the
above technique for the fabrication and testing of Coulomb-coupled metal-dot QCA structures, we
have investigated QCA-type behavior in a series of papers. In our initial studies, we demonstrated
the basic QCA switching behavior, i.e. the controlled tunneling of one single electron which is
induced by the switching of another close-by electron. We have also demonstrated the switching
of a QCA line, which showed that the whole line switched and that the signal did not decay (as
some critics had argued). In other studies, we demonstrated the functioning of a QCA majority
gate, which provides the basic building block for QCA logic operation. With these studies, we have
experimentally demonstrated the basic features of the QCA paradigm, albeit at cryogenic
- temperatures. In future work, we will investigate ways to realize QCA behavior at higher
temperatures, with the main goal of room temperature QCA operation.
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Observation of Supercurrent Drag between Normal Metal and Superconducting Films

Xiaokang Huang, Greg Bazan, and Gary H. Bernstein*

Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556
(Received 1 September 1994)

We experimentally investigate the Coulomb interaction between normal metal (Au/Ti) and
superconducting (AlO;) 2D films separated by an insulating (Al;O;) layer. We report here the
observation of supercurrent drag predicted by Duan and Yip [Phys. Rev. Lett. 70, 3647 (1993)]. The
drag was observed at-temperatures close to T, with the ratio of the drag current to the drive current as

high as about 1 X 1072,

Our results are discussed in terms of a model of Coulomb mutual scattering

between the normal electrons in the drive wire and the superelectrons in the drag wire.

PACS numbers: 73.20.Dx, 73.50.-h, 73.61.~r, 74.90.4+n

Coulomb mutual scattering (CMS) between two proxi-
mate electron gases was first discussed theoretically by
Price [1]. It was predicted that electrons in the two closely
separated electron gases could exchange their momentum
and energy via their Coulomb interaction, resulting in cur-
rent drag. Coulomb drag was later experimentally ob-
served between a two-dimensional electron gas (2DEG)-
and a three-dimensional electron gas (3DEG) [2], and also
between two 2DEG’s [3,4]. The samples in those experi-
ments were GaAs/AlGaAs heterostructures. Although the
CMS model can be used to qualitatively explain their re-
sults, some subtle effects, such as Peltier heating [2,4,5]
and virtual phonon exchange [3,6], were also involved as
secondary coupling mechanisms. Current drag in a mag-
netic field [7] and from the van der Waals interaction [8]
was also investigated theoretically. CMS has not been ex-
perimentally observed in normal metal systems because of
screening and dissipation.

Recently, Duan and Yip [9] theoretically studied the
Coulomb interaction between two spatially separated su-
perconducting systems that can be either two-dimensional
(2D) films or one-dimensional (1D) lines. They con-
cluded that a relatively strong supercurrent drag could
result from the Coulomb interaction, with an estimated cur-
rent drag-to-drive ratio between two 1D loops separated by
100 nm as high as 1073, This could also be true with nor-
mal metal as the input and the superconductor as the sen-
sor [9]. The first experimental study on current coupling
in a superconductor—normal metal system was recently re-
ported by Giordano and Monnier [10]. However, the weak
coupling and the similarity of their results to the behavior
of vortices in high-T. superconductors [11] led them to
consider a mechanism of coupling other than supercurrent
drag.

In this Letter, we report experimental results of the
observation of supercurrent drag between a normal metal
(Au/Ti) film and a superconducting (AlO,) film separated
by an insulator. Although a structure similar to that
of Ref. [10] was used in our experiments, our samples
were more than a hundred times smaller. Very strong
current coupling (~1073) was observed when the drive
current was injected into the normal metal film and the

0031-9007/95/74(20)/4051(4)$06.00

open circuit voltage was detected at the superconducting
side. There was no detectable coupling measured at the
normal metal wire when the drive current was injected
into the superconducting wire. The current coupling ratio
as a function of temperature was fitted by a model of
Coulomb mutual scattering between the electrons in the
drive (normal metal) wire and the superelectrons in the
drag (superconducting) wire.

A schematic diagram of the trilayer samples used in our
current drag experiments is shown in Fig. 1. The bottom
layer is 12/3 nm thick Au/Ti. Ti was used for adhesion
between the Au layer and the Si0,/Si substrate. The top
layer is 30 nm thick AlO, formed by bleeding O, with
a pressure of 5 X 1076 torr [12] into the vacuum cham-
ber during Al evaporation. We chose AlO, over pure
Al in order to achieve a wide transition temperature re-
gion. This helped us to more accurately investigate the
change of the current drag over the transition from the
normal state to the superconducting state. The sheet re-
sistance of the Au/Ti film was 8 () at room tempera-
ture. The sheet resistance of the AlO, film ranged from
10 O to 2 kQ at room temperature, depending on the per-
centage of O, in the Al film. An Al;O;3 insulating layer,
deposited by the same method as the AlO; layer except
with higher O, pressure (5 X 107 torr), was formed be-
tween the Au/Ti and the AlO,. The relative dielectric
constant of the Al,0; was 4.5—6 as obtained by capaci-
tance measurement, the breakdown voltage was 107 V/cm,
and the thickness was 35 nm, as measured with a sur-

AlOy
Al203

Si0 2
Si sub.

FIG. 1. Schematic of our device structure. The thickness of
the Al,0; separation was 35 nm and the overlapping area of
the A1O, and Au/Ti was 1 X 50 um?.

© 1995 The American Physical Society 4051
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face profiler.” The thickness of our insulating layer pre-
vented tunneling between the two conductive layers, result-
ing in a total leakage resistance between the two layers of
10°-10'2 ). Both the Au/Ti and A10, layers were 1 um
wide. Electron beam lithography was used to pattern the
Au/Ti and the A10; in order to make the two layers totally
overlap. The alignment error was < =0.05 xm [13] over
an active area of 1 X 50 um?. A 15 Hz ac current signal
was sent into the primary (drive) side. The coupling sig-
nal at the secondary (drag) side was detected with a lock-in
amplifier as an open circuit voltage.

It would be preferable to measure the short circuit
drag current instead of the open circuit voltage from the
secondary side. It is difficult to measure the current
directly with a lock-in amplifier because the resistance
of metal lines is very small at lower temperatures, and
changes continuously over the transition region, becoming
so small that it cannot drive the ammeter. This is because
the low metal resistance, i.e., the source resistance of
the drag wire as current source, short circuits the drag
current from the ammeter. Therefore, we determined the
supercurrent drag by measuring the open circuit voltage
at the secondary side with a high impedance lock-in
amplifier. As shown in Fig. 2(a), an input current I;
is injected into the primary side. The electrons in the
primary wire transfer their momentum to the electrons in
the secondary wire via CMS [1], resulting in a drag current
Israg flowing in the same direction as /, and causing an
accumulation of electrons at one end of the secondary
wire, inducing an open circuit voltage V, at the secondary
side. This induced voltage causes electrons to drift in the
opposite direction within the wire, canceling the effects
of drag ad resulting in net zero current. As shown in
Fig. 2(a), the polarity of V, is opposite to that induced
in the input loop by the input current /;.

Primary Secondary

1T
D I ] .

T+ @

o - -

Ydreg Ry
® va

®)

FIG. 2. (a) Circuit schematic of our test circuit. /; is the input
current and V. is the measured open circuit voltage. (b) The
equivalent circuit of the secondary wire. R, is the temperature
dependent resistance of the secondary wire.

4052

The equivalent circuit [14] of the secondary wire is
shown in Fig. 2(b). The induced current Jy;,g is symbol-
ized as a current source. R, is the resistance of the sec-
ondary wire. For short circuit conditions, V, = 0, which
gives I = Ic = I4rag, While with the output loop open cir-
cuited, I, is zero. For open circuit conditions,

Vo = Voo = IdragRZ or ]drag = Voc/RZ . 03]

This simple relationship is very important since it shows
that V,. can give us a measure of lung provided that R is
known.

The resistance of the A10, film (sample 2a.1), R,, was
measured using a standard four-probe measurement with
5 nA input current. The change of the resistance as a
function of temperature, ranging from 1.87 to 2.3 K is
shown in Fig. 3(a). It shows that the transition between
the normal state and the superconducting state occurred in
the temperature range from 1.93 to 2.05 K.

Figure 3(b) shows V. and V. /I; as a function of tem-
perature. V,. was measured at the A1O, side when intro-
ducing the input current /; at the Au/Ti side. Several sam-
ples with the same size, but with different transition tem-

2000 . ’ . .
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FIG. 3. (a) Temperature dependence of the resistance of
the AlO,. The transition temperature region was 1.93 to
2.05 K. (b) The ratio of the open circuit voltage, Ve, to the
input current /, as a function of temperature for 7, injected into
the Au/Ti wire and V,. detected at the A1O,. For convenience,
data are also plotted as V.. (¢) Voo/Iy as a function of
temperature with /; injected into the A10, and V,. measured
at the Au/Ti.
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peratures, were measured and the results were repeatable.
Similar effects were also observed with a sample that con-
sisted of 10 wm wide A10, and 20 pm wide Au/Ti layers
separated by a 35 nm thick Al,0; layer, although the cou-
pling signal was more than 100 times weaker in this case.

As discussed above, V. (V. /1) is a function of both R,
and Iyr,g, Which are both temperature dependent. Compar-
ing Figs. 3(a) and 3(b), we can see that when the tempera-
ture T is higher than the critical temperature of the AlOy,,
there is no induced \?o‘ltage detected. Since Voo = IgragR>
and R, # 0, zero open circuit voltage means that there is
no coupling current at this temperature range. The ab-
sence of coupling is due to the fact that the Al1O, is still in
the normal state within this high-temperature region where
the screening effect is strong and the normal electrons are
dissipative. This also confirms that there is no detectable
current coupling between two normal metal films for a bar-
rier of 35 nm.

When the A10O, starts to became superconducting at T
below ~2.0 K, some electrons form Cooper pairs and some
are still in the normal state. Since Cooper pairs move
freely without dissipation and interact within a coherence
length that is much larger than the screening length in the
normal state, a supercurrent /g, results from the Coulomb
interaction between the normal electrons in the drive line
and the superelectrons in the drag line. Therefore, an
open circuit voltage across the AlO, line appears because
Iiag # 0 and R; # 0 on this region. The magnitude of
the induced voltage increases as temperature decreases
and more electrons pair. This means that with decreasing
temperature, although the resistance of the A10, decreases,
the increase in the coupling current from the Coulomb
interaction is much faster than is the decrease of the
resistance.

The negative sign of V,. means that its polarity is in
the opposite direction relative to I;, as discussed above.
This indicates that the coupling current is in the same
direction as I;, which was expected [2—5,9] for a Coulomb
interaction with momentum transfer between the electrons
in the Au/Ti and Cooper pairs in the AlO,. As the
temperature decreases, the magnitude of V. reaches a
maximum value when the increase of /4. balances the
decrease of R,. After this, the magnitude of V. starts
to drop toward zero with the temperature far below T
because R, approaches zero in Eq. (1). The negative sign
of V.. also tells us that the induced voltage was not from
leakage or tunneling, since in both cases the voltage in the
drag line would be in the same direction as that in the drive
line. As a further check, we measured the leakage current
with 0.5 V bias applied between the two films and found
the leakage resistance to be greater than 10° Q with very
little variation over the temperature range of interest. Vi
could be due to neither classical capacitive nor inductive
coupling since either coupling would correspond to a
nonzero voltage =90° out of phase relative to the input
signal. We therefore measured the quadrature component
simultaneously and found it to be much smaller than the

in-phase component, with almost no variation over the
temperature range and for frequencies from 15 to 1500 Hz.

The open circuit voltage was also measured at the Au/Ti
film when AlO, wire was used as the input. V,./I, for
this case is shown in Fig. 3(c). It is important to note
that the vertical scale of Fig. 3(c) is 10? times smaller
than that of Fig. 3(b). From this figure, it is clear that no
current coupling could be detected. Therefore, the current

" coupling from the superconducting wire to the normal

metal wire was at least 10° times smaller than that of the
reverse case. This asymmetric behavior of the current
coupling provides more evidence that the detected current
coupling was neither from electromagnetic coupling nor
from quantum tunneling between the two films. Our data
are in good agreement with supercurrent drag theory [9],
as will be discussed further below. Since there was no
coupling when the normal metal acted as the secondary
wire, the current coupling and the coupling ratio mentioned
below refer only to the case in which the Al/Ti is the
primary wire and the A1O; is the secondary wire.

The equivalent resistance Vo./I;, as a function of the
input current /;, was also investigated. As I; changed
from 0.5 to 10 pA, the peak magnitude of Vo./I; only
fluctuated within =10% of the peak value. However,
the peak position moved toward lower temperatures with
I, > 2.5 uA. This is possibly due to self-heating of the
sample for large input current.

The temperature dependence discussed above is quali-
tatively similar to that reported in Ref. [10], but with
much greater measured output voltages. The differences
in sign and magnitude between our results and those of
Ref. [10] imply that different mechanisms are involved in
the two current coupling processes. CMS was ruled out in
Ref. [10], whereas below we justify our interpretation in
terms of CMS.

From Eq. (1), I4ag Was calculated from Vo and R
measurements, and is shown in Fig. 4(a) as the current
coupling ratio l4rag/I1. As expected, there was no current
coupling when the AIO, was in the normal state. At
temperatures below T, larag /1 increased rapidly to values
as high as about 1 X 1072, It is not surprising that the
error Of I4rg /11 increased as temperature decreased, since
larag = Voc/R2. The absolute error of the drag current,
8 l4rag, can be written as

51drag = t\/(gvoc/Rﬁz + (VocaRZ/Rg)z ’ @

where 8V, and 8 R, are the absolute errors of V. and R,
respectively. Thus, when R, approaches zero, 8l4ng ap-

~ proaches infinity. Therefore, Vo /R, was used for calcu-

lating Igrag in Fig. 4(a) only when R, and V,. were not too
small, i.e., for temperatures close to T¢.

With reference to the Drude transport model, the drag
current in the secondary wire can be considered part of
the current flowing in the first wire but with a different
scattering time, so the relationship between the coupling
current and the mutual scattering rate can be expressed as
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FIG. 4. The relationship between the current coupling ratio,
Iicag/T) = Voc/RaIy, and temperature for sample 2c.1 (a) and
la.l (b). The normalized Cooper pair density as a function of
temperature is also shown in the figures for comparison with
the supercurrent drag theory.

Lirag = (T1/712)11, €))
where 7, is the electron scattering time in the drive wire,
and 71, is the mutual scattering time between the two wires.
The scattering rate 1/7, is proportional to N1N; [1], that
is,

1/712 = KiaNiN2, 4
where K| is a temperature independent coefficient. N, and
N, are the electron and Cooper pair concentrations in the
drive (normal metal) wire and the drag (superconducting)
wire, respectively. Since N, is constant in the temperature
region concerned, 1/7; has the same temperature depen-
dence as that of N,. From N» = N[1 — (T/T.)*1/2 [15],
where N is the total electron concentration in the super-
conducting wire, we have

Iisag/Ty &« 1/T1g ¢ Ny = 1 — (T/T.)*. )
In Fig. 4(a) we also plot the normalized electron con-
centration Ny = 2N,/N =1 — (T/T.)* for T, chosen as
2.005 K. The similarity between the shapes of Jurag /11 and
Ny is strong evidence that the drag phenomenon is related
to the pairing of electrons in the superconducting drag wire
below the transition temperature.

Figure 4(b) shows lung/I} and No as a function of
temperature from sample la.l. _Although this sample
was with the same geometry as 2c.1, its transition region
was much larger due to its large sheet resistance (2 k()
of AlO, wire. At our lowest temperature (1.8 K), the
resistance was still larger than 15% of the resistance at
4.2 K. However, the detected Iurag//1 had the same trend
as Ny, as we saw in Fig. 4(a).

In conclusion, we believe that the observed current drag
is due to phenomena predicted in Ref. [9], namely, super-
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current drag between normal electrons and Cooper pairs.
First, this current coupling appeared only below T, and
is therefore associated with Cooper pairs and not elec-
trons in the normal state. Second, the induced open cir-
cuit voltage yielded the opposite polarity to the input
current signal, consistent with the phenomenon of momen-
tum transfer due to CMS [3,9]. Finally, the temperature
dependence of the drag current, obtained indirectly from
the resistance and open circuit voltage measurements, was

" consistent with the Coulomb interaction between the nor:-

mal electrons in the drive wire and the Cooper pairs in the
drive wire. However, further experiments are needed to
understand why we saw much stronger coupling with our
small samples (1 um wide) than that of our large samples
(10 um wide) and that of Ref. [10] (150 wm wide).
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Design of gate-confined quantum-dot structures in the few-electron regime
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Numerical simulations for the design of gated delta-doped AlGaAs/GaAs quantum-dot structures in

the few-electron regime are presented. The confining potential is obtained from the Poisson equation

with a Thomas—Fermi charge model. The electronic states in the quantum dot are then obtained

from solutions of the axisymmetric Schrodinger equation. Our model takes into account the effect

of surface states by viewing the exposed surface as the interface between the semiconductor and air

(or vacuum). Various gate configurations and biasing modes are explored. The simulations show that ...
the number of electrons can be effectively controlled in the few-electron regime with combined
enhancement and depletion gates. © 1995 American Institute of Physics.

I. INTRODUCTION

In recent years, advanced fabrication techniques have
made possible further confinement of a two-dimensional
electron gas (2DEG) into wires or dots where quantum ef-
fects are significant.! Quantum dots have been the focus of
numerous studies, and controllable loading of these dots with
few electrons has been achieved,? allowing one to speak of
quantum-dot hydrogen, quantum-dot helium, etc. Very re-
cently, coupling between such close-by “quantum-dot at-
oms” has been demonstrated, thus realizing semiconductor
“quantum-dot molecules.”>

Based on the emerging technology of quantum-dot fab-
rication, an application of computing with coupled quantum-
dot molecules has been proposed in a series of papers.*’
These so-called quantum cellular automata (QCA) are based
on arrays of cells, each of which is composed of coupled
quantum dots and occupied by few electrons. Figure 1(a)
schematically shows a QCA cell consisting of five dots and
occupied by two electrons. Due to the mutual Coulombic
repulsion between the electrons, these cells exhibit bistable
behavior which can be used to encode binary information.*’
The fabrication of such a cell is a challenging problem, yet
appears to be within reach of current lithographic capability.6
Figure 1(b) shows a possible physical realization which is
based on electrostatic confinement provided by a top metallic
electrode. The key implementation challenges are (i) to gain
sufficient gate control in order to define quantum dots in the
few-electron regime, and (ii) to place these dots sufficiently
close to each other in order to make coupling possible.

In this paper, we numerically investigate the feasibility
of realizing gate-controlled quantum dots in the few-electron
regime for possible QCA applications. In order to achieve a
crisp confining potential, we will focus on minimizing the
effects of fringing fields by bringing the electrons as close as
possible to the top surface. This design strategy of “trading
mobility versus gate control” by utilizing near-surface
2DEGs has been pioneered by Snider et al.” However, the
resultant proximity of the quantum dot to the surface raises
the question of the effect of the exposed surface on the quan-
tum confinement. In our modeling, we explicitly include the

*Electronic mail: Wolfgang.Porod@ND.edu
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influence of surface states which are occupied, in a self-
consistent fashion, according' to the local electrostatic
potential.8 Our modeling will show that the simple geometry
of a conventional negatively biased metal electrode as shown
in Fig. 1(b) does not provide sufficient gate control for QCA
applications, even for extremely shallow 2DEGs. We have
therefore explored the use of dual gates which, as we will
demonstrate, allows one to achieve much better control of
the confining potential—a result which has also been found
in recent related studies.*!°

There exists a large body of literature on the modeling of
quantum dots; we refer to only a few representative papers.!!
Since the operation of such a device is primarily based on
controlling the electron density by varying the confining po-
tential, the modeling of the potential distribution and the
electronic states in these structures is important. We obtain
the confining potential from solutions of the axisymmetric
Poisson equation with a Thomas—Fermi charge model. The
electronic states in the quantum dot are subsequently deter-
mined from solutions of the axisymmetric Schrodinger equa-
tion using the previously calculated confining potential. Our
simulation takes into account the effect of surface states by
viewing the exposed surface as the interface between the
semiconductor and the dielectric (air or vacuum). In our
problem formulation, we view as the natural problem domain
both the semiconductor and the dielectric.® The usual Dirich-
let or von Neumann boundary conditions at the exposed
semiconductor surface are replaced by more physical match-
ing conditions at the interface between the semiconductor
and the dielectric. The importance of the proper choice of
boundary conditions on exposed surfaces has also been
stressed in Ref. 12. Fermi-level pinning is a result of our
modeling, and not an input. For the numerical treatment, we
have developed a combined finite-element and boundary-
element method (FBEM algorithm),® which is modified here
for the cylindrically symmetric quantum-dot structures. We
investigate the number of confined electrons and the physical
size of quantum-dot structures as a function of gate geom-
etries and biasing modes. All our modeling is performed for
a temperature of 4 K.

Our modeling is aimed at.exploring the parameter space
for the design of quantum dots. In order to make the simu-
lations feasible, we had to make certain simplifying assump-

© 1995 American Institute of Physics
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FIG. 1. (a) Schematic diagram of a bistable quantum-dot cell occupied by
two electrons (see Refs. 4 and 5). (b) Physical realization by gate-controlled
quantum dots.

tions. One of these assumptions is our focus on individual
axially symmetric quantum dots, even though we have ge-
ometries in mind which lack this symmetry. Also, for reasons
of numerical feasibility, we have chosen a Thomas—Fermi
charge model in the semiconductor. Fully quantum-
mechanical simulations involving the self-consistent solution
of Poisson’s and Schrodinger’s equations tend to be compu-
tationally prohibitive. Also, the Thomas-Fermi charge model
is known to be a reasonable approximation to a fully
quantum-mechanical model.”® Because of the Thomas—
Fermi charge model used in our calculations, the threshold
voltages we predict are too low, by approximately 20 mV,
due to the spacing between the bottom of the conduction
band and the lowest energy level. Another issue is the treat-

Az . | W4

ment of the impurities which may or may not be in thermal
equilibrium with the semiconductor, depending upon the ex-
perimental conditions.'* In our modeling we have assumed
that conditions are such that the impurities are in equilibrium
with the semiconductor at the given temperature.

The remainder of this paper is organized as follows. In
Sec. II, we present the problem formulation including the
treatment of the exposed surface. This section outlines the
generalization of our previously developed FBEM solution
algorithm for Poisson’s and Schrodinger’s equations8 to cy-
lindrical coordinates for the axially symmetric dot geom-
etries. In Sec. III, we utilize the numerical calculations to
discuss three different gate structures and biasing modes for
the design of quantum dots in the few-electron regime. Con-
cluding remarks are given in Sec. IV.

Il. PROBLEM FORMULATION
A. Problem statement and numerical treatment

An example of a gate-confined quantum-dot structure
with axial symmetry is shown in Fig. 2. In the semiconductor
domain, the quantum dot is realized at the AlGaAs/GaAs
heterojunction and is defined by applying an appropriate
(negative) voltage V; to the gate on the top surface. Note the
opening in the gate metal which exposes the semiconductor
to the dielectric (air or vacuum), as schematically shown in
Fig. 2(a). ‘

For axial symmetry, Poisson’s equation can be written in
cylindrical coordinates (r, 8,z),
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FIG. 2. Model quantum-dot structure with axial symmetry. (a) Full problem domain which consists of both the semiconductor (€, and ;) and the dielectric
(£),) regions. (b) Two-dimensional generating areas and boundaries with typical dimensions. (c) FBEM mesh which is dense inside the semiconductor region

and only consists of the discretized boundary surrounding the dielectric region.
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where the electrostatic potential ¢ is contained in the re-
duced variable u=(Eo(¢)—Eg)/kT which measures the
separation between the conduction-band edge and the Fermi
energy in units of the thermal energy k7, and € is the dielec-
tric constant. The right-hand-side term represents the charge
density in the semiconductor, with f= e’ (p—n+N}
— N )/kT and all symbols have their conventional meaning.
A semiclassical Thomas—Fermi charge model is assumed for
the equilibrium electron and hole densities which are given
by a Fermi-Dirac integral of order 1/2. 815

In order to solve Eq. (1), we utilize our previously de-
veloped FBEM algorithm,® which is a combined finite ele-
ment method (FEM)16 for the semiconductor domain and a
boundary element method!” for the dielectric region. The
generating domains and boundaries are shown in Fig. 2(b),
and the FBEM mesh is shown in Fig. 2(c). In its original
form, the FBEM algorithm was developed for Cartesian co-
ordinates, and we generalize it here for cylindrical coordi-
nates. We will briefly describe the FBEM algorithm below
and refer the reader to Ref. 8 for further details.

For the semiconductor domain ), with Q,;=Q,UQ,,
the standard FEM discretization of Eq. (1) results in the fol-
lowing nonlinear system of equations: '

K ug+Kjpup, =P;,

K,uj+Kpup, =Py, @
where uj, and P}, contain the potentials and nodal forces at
the nodes on the interface 3{2p, between the semiconductor
and the dielectric, whereas ug and P} contain the potential

- and nodal forces at all other nodes inside the semiconductor
domain, and K is the stiffness matrix.

The dielectric domain ), is a charge-free region. The
governing equation is Laplace’s equation. Since the funda-
mental solution of Laplace’s equation is known, a boundary
integral equation technique can be employed. With the
known three-dimensional fundamental solution of Laplace’s
equation in cylindrical coordinates and its associated dielec-
tric flux density, the boundary contour 3€}, can be calculated
explicitly in terms of complete elliptic integrals of the first
and second kind, K(m) and E(m), respectively. 1718 The re-
sultant system of equations can be expressed as

d d _
S1ug+8Spup,=Pf,
d d _ 3)

S1uG+ 805, =P, ,
where S is the equivalent stiffness matrix and P? is the
equivalent nodal force vector. o

The matching conditions at the exposed surface are
given in discretized form by?

Uj,=Ugs=Uga, : )

e
P§A+P§A=ﬁ Qint» . ®)
where Q;,,=Q;n(up,) is the nodal charge density on the ex-

posed semiconductor surface.
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A global system of equations is formed by coupling the
semiconductor, Eq. (2), to the dielectric, Eq. (3), while en-
forcing the matching conditions, Egs. (4) and (5),

Si Sz O 0 uj P

Sot Sz 0 I ) wgy| | Qul

0 K, K 0 w | Pl (©)
0 K, K, -1 |Pba 0

Solution of this set yields the potential distribution in the
semiconductor and dielectric domains, including the inter-
face 6Qp, , and the nodal flux on dQp, .

The confined electronic quantum-dot states at the
AlGaAs/GaAs interface are obtained by solving the axisym-
metric Schrodinger equation for a computed axially symmet-
ric potential profile V(r,z),

=g, z)e'’?, _ 7)
2 [1 9 d N &
am* |7 ar \"ar) T 52800
‘2 lZ ' )
+ V(T,Z)‘*‘5‘;;;‘2}81(’,2)'—'1’3181(",2)- (8)

i, is the electronic wave function which may be factored due
to the axial symmetry; exp(ilf) is the angular momentum
part and g, is a function of only (r,z). V(r,z)=kTu(r,z) is
the axisymmetric confining potential and m* denotes the ef-
fective mass.

The asymptotic decay of the wave function far from the
dot region provides zero-valued Dirichlet and/or Neumann
boundary conditions. Standard FEM discretization of Eq. (8) -
results in the following linear eigenvalue problem:

Ag=EBg, ©

where g; is the vector of nodal values for the axisymmetric
wave functions on the (r,z) plane, and E, is the eigenenergy.
Since we are interested in only the lowest few eigenstates,
Eq. (9) is solved by a subspace iteration method.'>8 The
electronic wave functions ¢;, can then be obtained directly
from Eq. (7).

B. Interface charge density on the exposed
semiconductor surface

In order to solve the above problem, the interface charge
density Q;,, must be given in order to specify the matching
condition (5) on the exposed semiconductor surface. It is
well known that energy states lying within the band gap play
a dominant role for the interface charge Q;,, on sexmconduc-
tor surfaces.!*~%

In this paper, the surface states are assumed to possess
acceptor- and donorlike characteristics,?! with densities D7
and D7}, respectively. The semiconductor surface charge den-
sity as a function of the surface potential up, is given by
Fermi-Dirac statistics with an appropriate qua51 -Fermi level
E5 for cases of applied bias®
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FIG. 3. Typical Gaussian energy distribution of interface states in the semi-
conductor band gap.
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As schematically shown in Fig. 3, typical Gaussian energy
distributions are assumed for the surface states

D%=D% exp| — (E-E)° (1)
ATP4 X\ T TORET )
(E—Ep)?
s _pss —
D;=Dj exp( _——ZAE% . (12)

The acceptor- (donor-) like surface-state densities are char-
acterized by their height D} (Djp), centroid E4 (Ep), and
width AE, (AEp).

In our surface charge model, following Ref. 21, the
acceptor- and donorlike states are assumed to be centered

around energies E,=0.75 eV and E,=0.5 eV, respectively,

GaAs 2.5 nm

AlAs 10 nm
A]o_:;GaojAS 1.25 nm

8-Doped Layer].25 nm ~—— 3—doping

Aly3Gag7As 1.25 nm

el AlAs 10 nm

-<+— 2-DEG
GaAs Subs&ate

FIG. 4. Schematic diagram of the delta-doped shallow 2DEG structure uti-
lized here (after Ref. 26).

measured from the valence-band edge. In the available litera-
ture, there are no unique agreed-upon values for the heights
and the widths of the distributions, but there is general agree-
ment on the range of the parameters. Here, we assume equal
values for the acceptor- and donorlike surface-state density
peaks DS = D§ = 6 X 10" cm eV~ and widths
AE,=AE,=0.1 eV. With this choice of parameter values,
we are able to reproduce the observed Fermi-level pinning
behavior.!?-22 In the above choice of the parameter values,
the location of the charge centroids is critical. Less critical
are the peak heights and widths, which may be varied over
the range of values reported in the literature,'*-22 while still

yielding Fermi-level pinning behavior. These issues pertain-

ing to the choice of the surface-state charge model will be
discussed in greater detail elsewhere.?

The strong nonlinearity of the interface charge as a func-
tion of the band bending at the surface may cause numerical
convergence problems, particularly for low temperatures. We
implemented a modified Bank—Rose damping scheme to sta-
bilize the convergence by adaptive underrelaxation and to
accelerate the convergence speed of Newton’s method 24%
The combination of our coupled axisymmetric finite-

. Exposed Surface Gate Gate 762
- —
Exposed Surface
5-Doped AlGaAs Layers w
GaAs Substrate GaAs Substrate GaAs Substrate
(a) ®) (c)

FIG. 5. Three types of top gate structures with axial symmetry: (a) depletion gate, (b) enhancement gate,
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and (c) combined enhancement/depletion gates.
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element/boundary-element algorithm and the adaptive damp-
ing scheme was found to perform quite satisfactorily.

ll. QUANTUM-DOT DESIGN

The results shown in this section concentrate on the de-
sign of quantum dots in the few-electron regime for possible
applications in QCA.*> Our simulations are based on the
delta-doped AlGaAs/GaAs structure reported in Ref. 26,
where it was shown that sheet carrier concentrations of
3.4X10" cm™2 and Hall mobilities of 1.2X10% cm? V™'s™!
at 4 K may be achieved with a shallow 2DEG 25 nm below
the semiconductor/vacuum interface. Figure 4 shows the
layer structure utilized in our modeling below. _

We will explore three types of axially symmetric top
gate geometries, which are schematically shown in Fig. 5.
The conventional biasing mode is one where a negative bias
is applied to the gate, thus depleting the 2DEG underneath
the metal electrode; we will refer to this mode as “depletion
mode” biasing. As shown in Fig. 5(a), a quantum dot may be
realized below the circular hole in the negatively biased gate.
One may also utilize structures with an initially depleted
2DEG, e.g., by surface depletion due to Fermi-level pinning.
An electron density may then be induced underneath a posi-
tively biased gate. This so-called “‘enhancement mode” bias-
ing is schematically shown in Fig. 5(b). By combining the
above two mechanisms, we designed a third type of
quantum-dot structure with combined center enhancement
and surrounding depletion gates, as shown in Fig. 5(c). We
will demonstrate that the dot occupation in this combined
enhancement/depletion mode can be accurately controlled by
adjusting the positive and/or negative bias on the gates.

A. Depletion gates

The n-typé sheet doping concentration for the delta-
doped AlGaAs layer is assumed to be 5.0%10'? cm ™2 which
leads to the formation of a 2DEG along the AlAs/GaAs het-
erointerface without gate bias. By applying a sufficiently
negative bias to the top gate shown in Fig. 5(a), a quantum
dot may be realized. For typical parameter values, the result-
ing potential variations inside the semiconductor are plotted
in Fig. 6, (a) perpendicular and (b) parallel to the surface.
Figure 6(a) shows a plot of the conduction-band profile per-
pendicular to the semiconductor surface at the center of the
circular gate opening. Electrons accumulate at the GaAs—
substrate/AlAs interface, where the conduction-band edge
dips below the Fermi level which is taken as the zero of the
energy scale. Care has to be taken that no parallel conducting
layer forms in the dopant plane. Figure 6(b) is a plot of the
conduction-band edge parallel to the heterointerface (on the
GaAs side), which shows the quantum-dot confining poten-
tial. Again, electron accumulation occurs in the region where
the conduction band dips below the semiclassical Fermi level
indicated by an arrow. The physical size of the quantum dot
can be measured as the radius of the circular cross section of
the conduction band at the Fermi level, which we will call
the “physical dot radius” r4, . Device applications of such a
structure are based on the ability to utilize the gate bias and
the gate size to modulate both the number of the confined
electrons and the physical size of the quantum dots.
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FIG. 6. Typical quantum-dot potential profile where the Fermi level Er and
the physical dot radius 4, are indicated: (a) perpendicular to the semicon-
ductor surface at the center of the dot, (b) parallel to the substrate GaAs/
AlAs heterointerface (on the GaAs side).

Figure 7 shows the size and occupation of quantum dots
for depletion mode biasing. The radius of quantum dots, 744,
induced by three different sizes of metal—electrode openings,
rg, is plotted in Fig. 7(a) as a function of the (negative) gate
bias voltage. As expected, the dot radius decreases with in-
creasing gate bias. Eventually, the dot is completely depleted
at a certain threshold voltage, which depends upon the gate
geometry. Figure 7(b) shows the corresponding number of
electrons in each dot, which is obtained by integrating the
electron density over the dot region. We see that the occupa-
tion number sensitively depends upon the gate bias, and that
the few-electron regime may be realized for reasonable val-
ues of gate dimensions and bias voltages. As an example, for
a 50-nm-radius metal-gate opening, the few-electron regime
is reached for a (negative) bias greater than 0.5 V; however,
for a bias greater than a threshold of 0.53 V, the dot is totally
depleted.

Note that the confining potential is rather gradual (per-
haps surprisingly so). In order to achieve a dot radius of, say,
10 nm, the radius of the gate opening has to be at least 30
nm. Even though we are utilizing here a 2DEG which is
extremely close to the surface, the features in the plane of the
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electrons are a factor of 3 (or more) smaller than the features
of the surface gates. As a consequence, it is not possible to
place dots (in the 2DEG plane) close to each other (since
they cannot be closer than the corresponding openings in the
metal electrode). We conclude that depletion mode biasing is
not a promising candidate for QCA applications.

B. Enhancement gates

The n-type sheet doping concentration for the delta-
doped AlGaAs layer is now assumed to be 3.0X10'2 ¢cm™2
which leads to a normally depleted 2DEG. Without an ap-
plied gate bias, the conduction-band edge along the GaAs/
AlAs heterointerface is close and above the Fermi level due
to the effect of the pinned GaAs surface potential. By apply-
ing a small positive bias on the center circular gate, shown in
Fig. 5(b), quasi-zero-dimensional electronic states may be
induced underneath the top electrode.

Figure 8 shows the size and occupation of quantum dots
for enhancement mode biasing. The radius of quantum dots,
T4or» induced by three different sizes of metal electrodes, rG,
is plotted in Fig. 8(a) as a function of the (positive) gate bias
voltage. Again, Fig. 8(b) shows the corresponding number of
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FIG. 8. Size and occupation of quantum dots for enhancement mode bias-
ing. (a) Radius of quantum dots, ryy, induced for three different sizes of
metal electrodes, r¢, as a function of the (positive) gate bias voltage; (b)
corresponding number of electrons in each dot.

electrons in each dot. For larger gate biases, both the radius
and the occupation of each dot increases. For example, for a
circular enhancement gate with 12 nm radius, the threshold
voltage is about 0.2 V and, in the few-electron regime, an
additional electron is added for every 10 mV increment in
the gate bias.

The control of the threshold voltage in this mode is criti-
cal. The gate bias cannot be too large since the structure
becomes leaky due to tunneling between the 2DEG and the
metal electrode. Another problem at positive biasing is that
parasitic electron accumulation occurs in the delta-doped
layers, as may be seen from Fig. 6(a).

We see that in this mode, the induced quantum dot (in
the plane of the electrons) may be similar in size to the top
metal electrode. QCA applications appear to be feasible,
since it is possible to realize arrangements of quantum dots
which are both close together and occupied by few electrons.

C. Combined enhancement/depletion gates

We will now demonstrate that a combination of enhance-
ment and depletion gates, schematically shown in Fig. 5(c),
provides effective control of the threshold voltage. The main
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idea is to negatively bias the outer gates (gate 2) such that
the electron density is depleted or near depletion; a positive
bias on the inner gate (gate 1) is then utilized to induce the
dot and to control its occupation.

Figure 9 shows an example of the size and occupation of
quantum dots for combined enhancement/depletion mode bi-
asing. The n-type sheet doping concentration for the delta-
doped AlGaAs layer is assumed to be 3.0X10'? cm™2, which
is the same as for the above enhancement gate structure. In
this example, we have chosen a radius of r;;= 6 nm for the
center enhancement gate, and a radius of r,=50 nm for the
surrounding depletion gate. The radius of quantum dots, ry,,
induced by three different voltages on the depletion gate V5,

is plotted in Fig. 9(a) as a function of the enhancement gate

bias voltage V. Figure 9(b) shows the corresponding num-
ber of electrons in each dot. We see that variations of the
depletion gate bias of 10 mV will result in threshold-voltage
variations of as much as 80 mV. This biasing mode appears
to be an effective way of controlling the quantum-dot thresh-
old voltage in the few-electron regime.

Note that the curves in Fig. 9(b) are much less steep than
the corresponding ones in Figs. 8(b) and 7(b). This means
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FIG. 10. Typical lowest energy wave function. As schematically shown in
the insets, the upper panel is a plot in the (r,z) plane, and the lower panel in
the (r,6) plane at the GaAs/AlAs heterointerface.

that the combined enhancement/depletion mode allows more
effective gate control of the quantum-dot occupation than
either the enhancement or depletion modes alone.

Several enhancement gates may be placed inside the
same depletion gate opening. In particular, one depletion
gate may define a single QCA cell and each dot is realized by
separate enhancement gates. Work on utilizing this design
strategy to realized QCA is in progress.

D. Quantized electronic states

The quantum-dot structures support three-dimensionally
confined electronic states. The separation of the quantized
energy levels is also of interest for applications. To this end,
we have solved the axisymmetric Schrodinger equation, Egs.
(7) and (8), for a given confining potential.

Figures 10 and 11 show a typical example of the wave
functions for the first and second electronic states, respec-
tively. The wave function of the lowest energy state is plotted
in the upper panel of Fig. 10 in the (r,z) plane and in the
lower panel in the (r, §) plane, as schematically indicated in
the insets. The corresponding plots of the wave function of
the second-lowest energy state are shown in Fig. 11. The
energy separation in this example (enhancement gate struc-
ture with a 20 nm radius) is E,—E;=13 meV.

IV. CONCLUSION

We have presented our numerical simulations for the de-
sign of gated delta-doped AlGaAs/GaAs quantum-dot struc-
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FIG. 11. Typical second-lowest energy wave function. As schematically
shown in the insets, the upper panel is a plot in the (r,z) plane, and the
lower panel in the (r,8) plane at the GaAs/AlAs heterointerface.

tures in the few-electron regime. The confining potential is
obtained from the axisymmetric Poisson equation with a
semiclassical Thomas—Fermi charge model. The electronic
states in the quantum dot are subsequently determined from
solutions of the axisymmetric Schrodinger equation using the
previously calculated confining potential. Our simulation
takes into account the effect of surface states by viewing the
exposed surface as the interface between the semiconductor
and the dielectric (air or vacuum). For the numerical treat-
ment, we have developed a combined finite-element and
boundary-element method (FBEM algorithm).

Utilizing a realistic material system with a shallow
2DEG, we have demonstrated that it is possible to realize
quantum-dot structures in the few-electron regime. Qur re-
sults indicate that the most promising design strategy is to
utilize combined enhancement/depletion gates, which allow
effective control of the threshold voltage. These structures
appear to be promising candidates for future QCA applica-
tions.
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Several practical issues in the development and operation of quantum-dot cellular automata
(QCA) cells and systems are discussed. The need for adiabatic clocking of QCA systems
and modeling of electrostatic confinement of quantum dots are presented. Experimental data
on dot coupling and applications to QCA detectors in a 2-dimensional electron gas (2DEG)
are presented. We report a charge detection scheme where we observe strong modulation
in the detector signal, in addition to the detector exhibiting minimal effect on the dot being
measured. With this investigation, we demonstrate these two key components required for
QCA in AlGaAs/GaAs materials, namely dot coupling and charge-state detection.

© 1996 Academic Press Limited

1. Introduction

Quantum cellular automata (QCA) has been proposed [1, 2] as a new technique for performing computation
through the use of quantum dots. The basic principle is shown schematically in Fig. 1A. A QCA cell consists
of quantum dots arranged such that, e.g. four sites may be occupied by two electrons with semitransparent
barriers connecting the dots in some configuration so that, through tunneling, electrons may arrange themselves
in their energetically lowest positions. As shown in the figure, the lowest energy state of the electrons places
them at corners of the cells aligned along either diagonal, the polarization of which can correspond to either
alogic ‘1’ or ‘0.

Two cells may be placed adjacent to each other such that they interact only Coulombically, with no
tunneling between cells allowed, as shown in the inset of Fig. 1B. The polarization of a cell due to that
of its neighbors is very high, such that slight polarization of one cell strongly forces the polarization of
its neighbors. Systems designed by Lent ez al. [3] and Fountain [4] demonstrate that extremely complex
digital logic systems can be built up from basic building blocks consisting of ‘wires’ (chains of cells),
invertors, AND gates, OR gates, and majority logic cells. For example, a full adder circuit with a dot size
of 10 nm would fit inside an area of about 1 square micron [3]. It is important to note that the design of
‘crossover’ configurations allows the entire system to exist in a plane, with no out-of-plane interconnects

required.

2. Switching behavior of QCA systems

QCA arrays may be switched abruptly, in which case the system is placed in an excited state by the rapid

0749-6036/96/080447 + 13 $25.00/0 : © 1996 Academic Press Limited
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Fig. 1. Quantum-dot cellular automata. A, Schematic of the basic four-site cell. Coulombic repulsion causes the electrons to occupy
antipodal sites within the cell. Each configuration can be assigned a digital logic value. B, The cell-cell response. The polarization of
cell 2 is fixed and its Coulombic effect on that of cell 1 is measured. The nonlinearity and bistable saturation of this response serves the
same role as gain in a conventional digital circuit. :

change of a driver cell, and decays through inelastic processes to its ground state. The resulting configuration
of the cells is the outcome of a single calculation. It is also possible to switch QCA devices in such a way that
the array remains in its instantaneous ground state at all times. The adiabatic theorem guarantees that this is
possible if the switching time is slow compared to the time associated with transitions to the first excited state
of the array. As shown in Fig. 2, the first step in adiabatic switching is to lower the intra-dot barriers within
edch cell, reducing the electron localization imposed by high barriers. Barriers between cells remain high.
The driver cell polarization is then switched adiabatically, followed by adiabatically re-asserting the barriers,
which returns the localization of the electrons and the polarization of the cell.

A study of the allowable speed of such switching has shown that the non-adiabatic error, which is due to
switching the devices too quickly to be strictly adiabatic, decreases exponentially with the time during which
the devices are switched. This exponential decrease is shown in Fig. 3 for a simple one-cell majority logic gate
and a larger five-cell extended majority logic gate. In spite of the fact that the five-cell device requires more
time than the single-cell device to switch with the same level of accuracy, both errors decrease exponentially
with switching time. Preliminary results on the scaling of switching time with the number of cells in an array
have shown switching time increases, at worst, in an approximately linear relationship with the number of
cells in an array. Adiabatic switching has the significant advantage that it provides a means of maintaining
clocked control over the calculation and eliminates dependence on inelastic processes in accomplishing device
switching.

3. Basic elements of QCA systems

The notion that controlled use of single electrons has progressed beyond basic physics is evident from
proposals of, for example, circuits and systems based on single electron tunneling [5-7]. Interest in these
systems is focusing less on the study of basic physical phenomena, and increasingly on how to assemble
building blocks in the design of more complex systems for the attainment of truly revolutionary applications.
It is relevant, then, to discuss what are the important building blocks for the creation of QCAs.

The basic elements of QCA require (1) that the appropriate number of (extra) electrons be induced in each
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decreasing the localization of the electrons within each cell. The old input is removed, and a new input is applied, followed by a
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Fig. 3. The non-adiabatic error introduced by switching a QCA array can be measured by the total projection of the cell state on all
non-ground state basis vectors after switching is complete. This non-adiabatic error decreases exponentially with the amount of time
allowed for switching the device. This figure shows the exponential decrease for two systems—a simple one-cell majority logic gate and
a more complicated five-cell extended majority logic gate.

cell, (2) that dots be sufficiently close to allow inter-dot tunneling, (3) that adjacent cells be close enough
to permit Coulomb coupling, and (4) that the cell polarization state be detected. Although one can envisage
QCA behavior in such varied systems as metal tunnel junctions [8, 9], Si inversion layers, self-assembled
quantum dots [10], nanomagnet arrays, vertical quantum dots, or even arrays of individual molecules, we
have chosen to do our initial studies in the well-characterized AlGaAs/GaAs system, which currently offers
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a large array of useful building blocks. Demonstrations of Coulomb blockade and single electron tunneling
through quantum dots for charge entrapment, single electron transistors for control of dot occupancy, and
single-electron electrometers [11-13] for charge detection are all available to the design engineers of future
single-electronic applications.

4. Modeling for QCAs

For the calculations discussed so far, modeling behavior of arrays of quantum-dot cells, it is appropriate to
use an extended Hubbard-type Hamiltonian and describe the individual dots simply as sites. We now turn to
the issue of designing the optimal gate patterns to realize these cells in semiconductor systems. For that, one
must employ realistic models of the detailed semiconductor-gate geometry.

In order to design optimal cells, it is important that potential profiles and electron density be calculated
through the accurate solution of Poisson’s equation. To this end, we have performed numerical simulations
for the design of quantum dot structures in the few-electron regime, both in the GaAs/AlGaAs and Si/SiO;
material systems. The confining potential is obtained from the Poisson equation within a Thomas-Fermi
charge model. The electronic states in the quantum dot are then obtained from solutions of the axisym-
metric Schrédinger equation. Our model takes into account the effect of surface states by viewing the
exposed surface as the interface between the semiconductor and air (or vacuum). This is particularly im-
portant for modeling the ITI-V material system, where surface states have to be taken into account. We
explore various gate configurations and biasing modes. Our simulations show that the number of elec-
trons can be effectively controlled in the few-electron regime with combined enhancement and depletion
gates.

The goal of this modeling is to numerically investigate the feasibility of realizing gate-controlled quantum
dots in the few-electron regime for QCA applications. In order to achieve a crisp confining potential, mini-
mization of the effects of fringing fields will be focused on, by bringing the electrons as close as possible to
the top surface. This design strategy of ‘trading mobility versus gate control’ by utilizing near-surface 2DEGs
has been pioneered by Snider, Hu and co-workers [14, 15]. However, the resultant proximity of the quantum
dot to the surface raises the question of the effect of the exposed surface on the quantum confinement. In
our modeling, we explicitly include the influence of surface states which are occupied, in a self-consistent
fashion, according to the local electrostatic potential [16). Our modeling has shown that the simple geometry
of a conventional metal electrode used for electrostatic confinement does not provide sufficient gate control
for QCA applications, even for extremely shallow 2DEGs. We have therefore explored the use of dual gates
which allows one to achieve superior control of the confining potential [17].

We will now demonstrate that a combination of enhancement and depletion gates, as shown in the inset of
Fig. 4A, provides effective control of the threshold voltage. The main idea is to negatively bias the outer gates
(gate 2) such that the electron density is depleted or near depletion; a positive bias on the inner gate (gate 1)
is then utilized to induce the dot and to control its occupation.

Figure 4A shows an example of the size and occupation of quantum dots for combined enhance-
ment/depletion mode biasing on an AlGaAs/GaAs 2DEG. The n-type sheet doping concentration for the
delta-doped AlGaAs layer is assumed to be 3 x 10'2 cm™2. In this example, we have chosen a radius of
r = 6 nm for the center enhancement gate, and a radius of rg, = 50 nm for the surrounding depletion gate.
The radius of quantum dots, r,,,, induced by three different voltages on the depletion gate, Vg2, is plotted
as a function of the enhancement gate bias voltage, Vgi. Figure 4B shows the corresponding number of
electrons in each dot (note that fractional dot occupancies are possible because of the semi-classical model
used).

We see that variations of the depletion-gate bias of 10 mV will result in threshold-voltage variations of as
much as 80 mV. This biasing mode appears to be an effective way of controlling the quantum-dot threshold

voltage in the few-electron regime.




Superlattices and Microstructures, Vol. 20, No. 4, 1996 451

10.0

oo
o

SN
o

TITETTTTITI T I A T T T T TTITITTI T I T T e T v e [T vTI T voerTs

4.0

Size of quantum dot r,, (nm)

2.0

~

V5, =065(V) /

Vgy=0.66(V)

llllllll[|11||Ill||l|llIlLll]llllllllllllllllllll

po
(e}

0.3 0.4 0.5 0.6
Gate bias V; (V)

5.0

40 -

30

Number of electrons

1.0

V= 0.64(V)

/

Vgy=0.65(V)

26.25nm

Vg,=0.66(V)

00 llllllllllIIlIlLllllLIIIllllllIIllIllll'Ill|illllllLl'lllll'll‘lI‘IllL

0.1

0.2 0.3 0.4 0.5 0.6 07 0.8

Gate bias V;, (V)

Fig. 4. Size and occupation of quantum dots for combined enhancement/depletion mode biasing. The gate dimensions are indicated
in the insets. A, Radius of quantum dots, r4er, induced by three different voltages on the depletion gate, Vg2, as a function of the

enhancement gate

bias voltage, V1. B, Corresponding number of electrons in each dot.
. S A




452 Superlattices and Microstructures, Vol. 20, No. 4, 1996

0.4 é VG=1'7V 10nm
- 4
g SiO, Lo
- = A
03 R
: p-Si Tdot
> F
<k
202 7 )
8 F.
5} rid
& r
0.1F
.
0.0 F
_O.l—llll|llll|II!llklll|!|ll|llll|lllllllll'lllllll|l
0.0 20.0 40.0 60.0 80.0

Distance (nm)
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We have also performed numerical simulations for the design of gated few-electron quantum dot structures
in the Si/SiO, material system. The motivation for this work is to investigate the feasibility of transferring the
emerging technology of quantum dot fabrication from the 1[0-V material system, where it was pioneered over
the past few years, to the technologically more important Si/SiO, structures. Silicon appears to be a promising
candidate due to the excellent insulating behavior of thin S¥/SiO; films which yields the required crisp gate-
control of the potential in the plane of the 2DEG at the Si/SiO; interface. Another advantage of silicon for
quantum dot applications appears to be the higher effective mass, as compared to the III-V materials, which
reduces the sensitivity of the energy levels to size fluctuations.

Quantum dots may be realized by applying a positive bias to a metallic gate on the surface, as schematically.
shown in the inset to Fig. 5. The positive voltage induces an inversion layer underneath the biased gate, which
may lead to the formation of an ‘electron droplet’ at the silicon/oxide interface, i.e. a quantum dot. Figure 5
shows, for an applied gate bias of 1.7 V, the corresponding potential variations along the Si/SiO, interface;
the Fermi energy is taken as the zero of energy and indicated by the thin horizontal line. An electronic system
is induced when the silicon conduction band edge at the oxide interface, indicated by the solid line, dips
below the Fermi level. We see that the formation of a quantum dot critically depends upon the thickness of
the oxide layer. Our modeling shows that for a 10 nmn gate radius, an oxide thickness around (or below) 10 nm
is required.

Figure 6A shows, for various oxide thicknesses, the radius of a bias-induced quantum dot, as schematically
shown in the inset. The positive bias is applied to a circular gate with 10 nm radius. Figure 6B presents
the corresponding number of electrons in the quantum dot, which is obtained by integrating the electron
density over the inversion region. The data shows that it should be feasible to create electronic systems with
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Fig. 7. Schematic diagram of gates and dots used in charge coupling and electrometer experiments.

dimensions on the order of 10 nanometers, and that it should be possible to control the electron occupancy in
the few-electron regime.

5. Coupled dot experiments

Dot coupling is the most critical phenomenon required of QCAs, affecting intracellular and intercellular
responses to inputs, and providing for an efficient method of charge detection, as we will demonstrate below.
Our coupled dot experiments were performed on 2DEG material consisting of a 15 nm undoped AlGaAs spacer
layer, a 30 nm n*-AlGaAs Si-doped donor layer, and a 20 nm nt-GaAs cap layer, resulting in 2DEG depth
of 65 nm. The 2DEG carrier concentration and mobility at 4.2 K were 3x 10! cm™? and 4.5x 10° cm? V=157,
respectively. Ohmic contacts were formed from AuGeNi, and gates were defined by electron beam lithography
(EBL). The cap layer was etched to minimize leakage current. The AuPd gate pattern was produced by EBL,
thermal evaporation, and lift-off.

The gate pattern shown in Fig. 7 forms a 1D constriction adjacent to a lithographically defined dot. The
lithographic dot (LD) has a total area of 490 x 360 nm? when negative gate voltages are applied to cor-
responding gates G g, G, G2, G3, Gplunger- The constrictions between G»~G, and G,—G, form tunneling
barriers through which the dot is weakly coupled to the source and drain. A back-gate contact was fabricated
for further control of carrier concentration. All experiments were performed in a 3He system with base tem-
perature of 300 mK. Conductance was measured using standard lock-in techniques with a 10 uV excitation
voltage at 10-20 Hz. The constriction and dot circuits were measured with separate lock-in amplifiers at
different frequencies.

The population of the lithographic dot can be changed by varying any of the top or back gate potentials. At
low temperatures (< 0.6 K) Coulomb blockade oscillations (CBO) with a distinct frequency were observed
as a function of the plunger gate voltage, Vpunger (Fig. 8A).

For certain settings of Vwmrmiaﬂ e also observed conductance resonances as a function of Vpiunger in
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Fig. 8. Single electron tunneling conductance oscillations as a function of plunger gate voltage for (A) lithographic dot in the absence
of fluctuation dot charging, (B) fluctuation dot, and (C) lithographic dot in the presence of fluctuation dot charging.

the narrow constriction adjacent to LD, shown in Fig. 8B. We believe these conductance oscillations were
due to the depopulation of charge trapped by a random fluctuation potential in the narrow constriction. Such
‘fluctuation dots’ (FD) have been studied previously in several different systems [18—21], and conductance
oscillations were interpreted in terms of Coulomb blockade transport through a quantum dot formed by
fluctuation potentials. A post-measurement examination by field emission scanning electron microscopy
revealed small (~ 20 nm) islands of n* GaAs on the surface, which may be the source of the fluctuation
potential seen by electrons at the AlGaAs/GaAs interface.
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Fig. 9. Fourier transform spectra of conductance oscillations for (A) lithographic dot in the presence of fluctuation dot charging and
(B) fluctuation dot charging.

The resistance of the barrier between the 1D constriction and the dot was determined to be greater than
100 GS2, guaranteeing that the dot in the 1D constriction and the lithographic dot were not directly coupled.
With proper bias settings, LD CBOs changed dramatically when FD CBOs were measured, as shown in
Fig. 8C, with the Fourier transform (FFT) spectrum shown in Fig. 9A. The presence of w; +wr and 0y — wF
components are clearly seen. Almost no trace of the LD signal is seen in the FD FFT spectrum (Fig. 9B). In
addition, sweeping the back-gate contact resulted in similar behavior of the two dots. The current through
LD exhibited periodic oscillations as a function of external charge when no other charge was present. The
periodicity of the LD oscillations was modified by the charging of the FD.

Our system is comparable to the metal tunnel junction system discussed by Lafarge et al. [22], with an
equivalent circuit shown in Fig. 10. The plunger affects the population of both LD and FD. As the population
of FD changes, it in turn modulates the population of LD. Assuming FD is smaller than LD, as expected from
lithographic constraints, the behavior can be explained in terms of the relative charging energies of the dots.
Since FD possesses less total capacitance, its charging energy is larger than that of LD, and its conductance
oscillations occur with a larger period in Vpunger. Although the coupling capacitor C, connects the dots, a
change in the occupancy of FD by one electron results in a larger potential shift than for a similar change
in occupancy of LD. Therefore, feedback of LD, acting now as an electrometer sensing the charge of FD, is
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Fig. 10. Equivalent circuit of the lithographic and fluctuation dot configuration.

minimized since FD requires a larger contribution to its potential by LD in order to change its charge state.
However, because LD is relatively large, its charging energy is small and changes in the potential of FD create
a noticeable effect on its charge state.

Figure 11 shows the results of our model using the equivalent circuit of Fig. 10, and our experimentally-
derived capacitance values. Parts (A) and (B) show LD junction charge and dot population as functions of
Vplunger, With and without the presence of FD. Figure 11(C) and (D) show the same information for FD. It
is clear that the additional potential from FD causes the positions of the population transitions of LD to shift
relative to their positions without FD. Since the conductance peaks occur at population transitions, these shifts
produce a clear modulation in the period of the conductance oscillations.

6. Summary and conclusions

We have discussed several practical issues in the study of theoretical and experimental QCA behavior.
We have shown that adiabatic switching of QCAs is preferable to abrupt switching, and that double-gated
structures are preferable to single-gated ones, resulting in very good control of dot size and occupancy. We have
also demonstrated charge coupling between two quantum dots, and their behavior as a sensitive electrometer
for the detection of single electron charging. The data was easily interpreted in terms of an equivalent circuit
with a coupling capacitor between the two dots. These data indicate that a useful way of detecting the charge
state of a QCA cell will be through the use of larger quantum dots as detectors of smaller dots. We have
demonstrated repeatable lithographic dots of various sizes, and designed and fabricated six-dot cells guided
by the results discussed here. The six-dot design incorporates four dots connected by tunnel junctions, forming
the QCA cell, and two adjacent dots to be used as detectors, according to the results described in this paper.
When an electron shifts between dots it is expected that the behavior of the non-invasive probe dots will be
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noticeably affected, thus providing us with information about the internal operation of the cell. The behavior
of these cells is currently under investigation. :
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We report direct measurements of the charging di

low temperatures. Our device consists of two metal d
coupled to another single dot serving as an electrometer.

agram of a nanoscale series double-dot system at

ots in series, with each dot capacitively
This configuration allows us to externally

detect all possible charge transitions within a double-dot system. In particular, we show that transfer
of an electron between two dots, representing a polarization switch of the double dot, can be most

prominently detected by our differential sensing scheme.” We also perform theoretical calculations

of the device characteristics and find excellent agreement with experiment. We discuss possible
applications as an output stage for quantum-dot cellular automata architecture. © 1997 American

Institute of Physics. [S0003-6951(97)00738-9]

Recently, there has been a growing interest in coupled
mesoscopic structures utilizing the Coulomb blockade (CB)
phenomenon for their possible applications as electronic
devices.!'"® Various investigators have pointed out that
coupled dots in the CB regime can perform useful computing
functions.” " A revolutionary computational paradigm,
known as quantum-dot cellular automata (QCA), depends on
the ability to control and detect the position of single elec-
trons in an array of coupled dots to perform digital
computation.®~'! The basic building block of QCA is four
dot cell shown in Fig. 1. A QCA cell can be constructed of
two series-connected dots separated by tunneling bariers
and capacitively coupled to a second, identical double dot. If
the capacitances are sufficiently small, charge is quantized
on the dots.'

If the cell is biased such that there are two excess elec-
trons within the four dots (one excess electron per double
dot), these electrons will be forced to opposite *“‘corners’” of
the four-dot system by Coulomb repulsion. The two possible
electron configurations, i.e., the polarization states of the sys-
tem, represent logic “‘0’" and “'1,’" as depicted in Fig. 1.
Properly arranged, arrays of these basic cells can perform
Boolean logic functions.

Critical to the implementation of QCA is a means of
detecting the positions of individual electrons in the output
cells. It has been shown'*"? that a metal dot can be used to
detect charge variation in another nearby dot. In previous
double-dot experiments, the Coulomb interaction of elec-
trons within two-dot systems is inferred exclusively from
their charging diagrams.““(’ A detection scheme that can
probe the polarization state of the double dot externally, and
with high sensitivity, has not heretofore been reported.

We present direct measurement of the internal charge

state of a double-dot system. Specifically, we show that our

charge detection technique is sensitive not only to the charge

variation of individual dots but also to the more subtle ex-
change of one electron between the two dots. Qur experi-
mental results exhibit excellent agreement with .theory. By
showing that switching of an electron within a double dot
can be externally detected, we demonstrate that our detection

UElectronic mail: Islamshah.amlani.l @nd.edu
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scheme is suitable for sensing the polarization state of a
QCA cell. .

Figure 2 shows a schematic diagram of our experiment.
The device under study consists of four Al islands referred to
as dots D, D,, D3, and D, respectively. Dots D, and D,
are connected by a tunnel junction and are capacitively
coupled to dots D3 and Dy which serve as electrometers.
Dots D, and D, are also capacitively coupled to control
gates A and B, respectively, to change the electron popula-

tions of their respective dots. In the experiment, we use con--

trol gates to shift an electron from D, to D, or vice versa,
mimicking a QCA transition, and measure the conductances
of D5 and D, simultaneously as a function of bias on the
control gates.

Fabrication of AVAIO,/Al tunnel junctions is accom-
plished using standard electron beam lithography procedure
and double angle shadow evaporation of AL'® The bottom
electrode metal, 25 nm thick, is oxidized in situ, followed by
50 nm of Al to form the top electrode. The two islands,
labeled D, and D, in Fig. 1, between the three (60
% 60 nm?) tunnel junctions are 1.4 um long, and the lengths
of islands D5 and Dy are 1.1 um each. '

_ The sample is mounted on the cold finger of a dilution
refrigerator with a base temperature of 25 mK. Conductances

of the double dot and each electrometer are measured simul-

taneously using standard ac lock-in techniques with an exci-
tation voltage of 4 uV at 16-40 Hz. A magnetic field of 1 T
is applied to suppress the superconductivity of Al The typi-

- cal tunnel resistance of a junction, based on I-V measure-

ments of the electrometers at 1 X, is approximately 200 k.
The total capacitance of the electrometer dots, Cy , extracted
from the charging energy (Ec~80 peV), is approximately 1
fF. Various lithographic and parasitic capacitances between
different gates and islands are determined from the period of

o ollb—
—0l o—

FIG. 1. QCA cell showing the two possible polarizations.

© 1997 American Institute of Physics
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FIG. 2. Schematic diagram of the device structure. The circuit used to
compensate for parasitic capacitance between the driver gates A/B and the
electrometer islands D3 /Dy is not shown.

the Coulomb blockade oscillations (CBO).! The double dot
structure is used as a gate electrode to measure the: capaci-
tance of the coupling capacitors Cp _p, and C52_04.

In our experiments, the charge on the double-dot struc-
ture is varied by sweeping gates A and B. Conductances
through the double dot and both electrometers are measured
simultaneously as a function of the control gate voltages. To
prevent these voltages from affecting the electrometers due
to parasitic capacitance, we apply cancellation voltages, with
polarities opposite to V, and Vg, to gates C and D. Using
this charge compensation technique, we can observe up to
100 periods in the electrometer conductances due to discrete
variations of the coupled island charges, without inducing
extra charge on the electrometers due to the control gates.
The operating points of the electrometers are set to be equal
to each other on a rising edge of their current versus island
charge characteristics to ensure an identical response from
each one. We have designed coupling capacitors Cp _p, and
Cp,-p, 10 be relatively large in order to make the electrom-
eters sensitive to small charge variations on the double dot,

_yet our measurement process is noninvasive since the cou-

pling capacitors constitute only 10% of Cs 3
The motion of electrons within the double dot can best

be understood from its charging diagram. A contour plot of

conductance through the double-dot, Gousié dol Vi, Vg), is
shown in Fig: 3. The peaks in conductance at triple points,
depicted by a convergence of contour lines, form a hexago-
nal ‘‘honeycomb’” observed by Pothier et al.’ Each hexago-
nal cell is delineated by solid lines surrounding regions
where a particular configuration (n;,n2) is the ground state,
with n; and n, representing the number of excess electrons
on dots D, and D,, respectively. In the interior of the cell,
there is no charge transport through the double dot due to the
Coulomb blockade of electrons. Under the influence of con-

trol gates, the charge configuration of the double dot can be -

varied by crossing honeycomb borders along any of the three
directions shown in Fig. 2. This does not result in significant
current flow through the double dot if the path chosen’ avoids
triple points. Along directions I and II, charge:is added to
only one of the dots in units of single electrons, while the
population of the other dot stays constant. Charge redistribu-

Appl. Phys. Lett., Vol. 71, No. 12, 22 September 1997

FIG. 3. Charging diagram of the double dot as a function of the gate volt-
ages V, and V. Charge configurations (n; and n,), which represent the
number of extra electrons on Dy and D, respectively, are arbitrarily cho-
sen. Lines labeled T, IL. and [II show a few directions in which charge can
shift between different configurations of the double dot.

tion in the double dot takes place along direction III when
electrons transfer from one dot to the other while maintain-
ing the total charge on the double-dot constant.

Figure 4(a) shows a small section of the double-dot
charging diagram, along with plots of the conductance
through the electrometers D3, Gp, and Dy, Gp_, shown in
Figs. 4(b) and 4(c), respectively. Lighter areas in these gray
scale contour plots represent higher conductance. To demon-
strate that a replica of the double-dot charging diagram can
be traced in the electrometer signals, we superimpose the
honeycomb boundaries from Fig. 4(a) onto Figs. 4(b) and
4(c). The change in the conductance of each electrometer
reflects the variation of the electrostatic potential in the dot
capacitively coupled to it. A sharp change in the conductance
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FIG. 4. (.a) Smaller section of the double dot charging diagram as a function
of gate voltages V, and V. (b) and (c) Conductances of the electrometers
Dy and Dy, respectively, with the honeycomb boundaries of Fig. 4(a) su-
perimposed. Sharp wansitions in the horizontal direction in (b) indicate a
change in the population of D . Sharp transitions in the vertical direction in
(c) reflect a change in the population of D, . (d) Differential signal obtained

from the conductances of the individual electrometers.
]
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FIG. 5. (a) and (b) Experimental and theoretical curves showing potential
changes in dots D and D, , respectively, during charge redistribution in the
double dot. The solid line represents the simulation result at 100 mK, and
the dotted line shows the experimental values calculated from the conduc-
tances of D5 and D, . (¢) Theoretical calculations of the charges on dots Dy
and D, during charge redistribution.

of D5 (from light to dark) in the horizontal direction [Fig.
4(b)] represents addition of an electron to D . Similarly,
sharp variation in conductance of Dy in the vertical direction
[Fig. 4(c)] indicates discrete variation of charge on D,.
Hence, the sharpest variations in the conductances of each
electrometer reveal the charging of their capacitively coupled
dots.

Sensing the state of a QCA cell requires detection of the
polarization change in the double dot shown by direction III
in the charging diagram of Fig. 2. In Figs. 4(b) and 4(c), we
see that the transitions along this direction are detected less
strongly in the electrometer signals. This is due to the cross
capacitance between dots D(D;) and D,(D3) which makes
each electrometer sensitive to both dots. According to our
measurements, the sensitivity of the electrometers to the re-
mote dots is about 30% of that to the nearby dots. During
charge redistribution in the double dot, the signals from the
two electrometers are out of phase by 180° and each refiects
the superposition of the two signals. As a result, the detected
signal is about 30% weaker than that along direction I (II) in
the conductance of D3(D4). To show the polarization
change of the double dot more prominently, we use the dif-
ferential' signal from the two electrometers, GD}—GD4, as
shown in Fig. 4(d). The most conspicuous transition, repre-
sented by a higher density of contour lines, occurs at the

boundary between the (0,1) and (1,0) states, indicating an

electron shift from one dot to the other. As mentioned above,
this is due to the phase difference (180°) in the signals of the
individual electrometers, yielding a differential signal which
is approximately twice as strong as the one detected by a
single electrometer. - i .

We compare the measured potential changes on dots D
and D, during the charge redistribution in the double dot
(direction I in Fig, 3) with theoretical results, which include
the experimentally determined capacitance parameters. Fig-
ures 5(a) and S(b) show the experimental and theoretical
plots of the potentials on dots D, and D,, respectively, as 2
function of the ‘‘diagonal voltage,” where AV,=—AVg.
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As expected, the potentials on the two dots change linearly,
maintaining a phase difference of 180° with an abrupt shift
when the electron populations of the dot change. To confirm
that the observed potential change of the two dots is caused
by a polarization switch in the double dot, we also show
calculated charges on the dots in Fig. 5(c). The theoretical
results are obtained by minimizing the classical electrostatic
energy for the ‘array of islands and voltage leads. The full
capacitance matrix is included, and the minimum energy
charge configuration is calculated subject to the condition
that island charge be an integer muitiple of electronic charge.
Finite temperature effects are obtained by performing the
thermodynamic averaging over all nearby charge configura-
tions. The experiment matches theory very well with only
the substrate background charge and temperature as fitting
parameters. The background charge adds an uncontrolled
offset to the position of the peaks, but does not change the
magnitude or period of the dot potentials. The best fit to
experiment is obtained for a temperature of 100 mK. The
discrepancy between this and the temperature of the experi-
ment (35 mK) is most likely due to heating of the electron
subsystem by the applied 4 4V excitation and insufficient
filtering of the leads.

In summary, we have presented direct measurement of
the internal state of a coupled dot system by externally de-
tecting all possible charge transitions of a single electron. A
polarization change of the double dot is most prominently
seen in the differential signal that utilizes the signals from
both electrometers. As proposed by Lent ez al.,'% a complete
implementation of quantum-dot cellular automata requires
the detection of single electron motion between dots. With
this investigation, we demonstrate that our differential detec-
tor can be used to confirm the operation of a QCA cell.
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Realization of a Functional Cell for
Quantum-Dot Cellular Automata

A. O. Orlov, I. Amlani, G. H. Bernstein, C. S. Lent, G. L. Snider

This paper presents an experimental demonstration of a basic cell of the quantum-dot
cellular automata, a transistorless approach to computation that addresses the issues
of device density, interconnection, and power dissipation. The device under study was
composed of four metal dots, connected with tunnel junctions and capacitors, and
operated at <50 mK. Operation was evidenced by switching of a single electron between
output dots controlled by a single electron switching in input dots, demonstrating a

nonlinear, bistable response.

Achievement of ever higher levels of in-
tegration in microelectronics eventually
will require a shift from the field-effect
transistor (FET)-based paradigm. Scaling
of FETs will be limited by unacceptable
power dissipation and short-channel ef-
fects, which lead to performance degrada-
tion. One alternative architecture, quan-
tum-dot cellular automata (QCA) (1), isa
transistorless approach with quantum dots
that addresses the issues of device density,
interconnection, and power dissipation.
Conventional digital architectures use
transistors as current switches to charge
and discharge capacitors to the required
logic voltage levels. In QCA, logic states
are encoded no longer as voltages but
rather by the positions of individual elec-
trons. QCA architecture is scalable to mo-
lecular levels, and performance actually
improves as the size of the device is de-
creased. The cell presented here operates
at cryogenic temperatures, but a molecu-
lar-sized QCA cell would function at room
temperature.

On the basis of existing technology, a
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possible realization of a basic QCA cell
would be composed of two series-connected
metal dots separated by tunneling barriers
and capacitively coupled to a second, iden-
tical double dot. The dots and associated
capacitances are sufficiently small that the
system is in the Coulomb blockade regime
(2) at the temperature of the experiment. If

the cell is biased so that there are two™

excess electrons within the four dots (one
excess electron per double dot), those elec-
trons are forced to opposite comers of the
four-dot system by Coulomb repulsion. The
two possible polarization states of the sys-
tem represent logic O and 1, as indicated in
Fig. 1A. Properly arranged, arrays of these
basic cells can implement Boolean logic
functions (3).

We report the experimental demonstra-
tion of a functioning QCA cell. Direct mea-
surements of the charging diagram of output
dots under the influence of electron switch-

" ing in input dots, combined ‘with electrom-

eter measurements of output dots, show a
controlled polarization change of a QCA
cell. Our experimental results show excel-
lent agreement with theory.

The device consists of four Al islands,
with input dots D1 and D2 and output dots

D3 and D4 (Fig. 1B). The Al-AlO,-Al
tunnel junctions were fabricated on an ox-
idized Si substrate by a standard electron
beam-lithography and shadow evaporation
technique (4). The area of the junctions is
about 60 by 60 nm. The sample was mount-
ed on the cold finger of a dilution refriger-
ator with a base temperature of 15 mK.
Conductances of the double dot and each
input dot were measured simultaneously by
standard ac lock-in techniques with an ex-
citation voltage of 4 wV at 16 to 40 Hz. A
magnetic field of 1 T was applied to sup-
press the superconductivity of the metal.
Typical resistance of a single junction at 1
K was 200 kilohm. Capacitances between
gates and islands were determined from the
period of the Coulomb blockade oscilla-
tions, and values of junction capacitances
were extracted from current-voltage mea-
surements {2).

A polarization change of the QCA cell
requires an electron transfer between dots
within each double dot. Gate electrodes
force an electron to switch from one dot to
the other within the input set of dots,

“which in tumn induces a switch of the

other electron in the output dots. This
process can best be understood by consid-
ering the motion of electrons within one
double dot. By measuring the conductance
through the double dot as a function of
the gate voltages V- and V5 (Fig. 1C), we
can determine the electron charge config-
uration within the double dot. Current
can flow through a double dot only at
certain settings of the gate voltages, where
the Coulomb blockade is lifted for both
dots simultaneously. A contour plot of the
measured conductance through a double
dot as a function of gate volrages V- and
Vs (Fig. 1D) shows peaks in conductance
at triple points, T, which form 2 hexago-
nal “honeycomb” (5). Each hexagonal cell
is delineated by dashed lines in Fig. 1D,
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Fig. 1. (A) QCA cell showing two A
possible polarizations. (B) Sche-
matic diagram of the experiment.
(C) Double-dot system with two HE
metal islands connected by a tunnel

junction. V and V, are gate voltag-
es controling the charge on dots
D3 and D4. (D) Contour plot of
measured conductance through
the double dot as a function of gate

voltages V; and V,, where (5, n,) is i
the number of excess electrons on P
dots D3 and D4.

marking a region where a particular con-
figuration (ns, n,) is the ground state, with
ny and n, representing the number of ex-
cess electrons on islands D3 and D4, re-
spectively. A switch of an electron be-
tween the two dots occurs along direction
E, whereas total charge on the double dot
remains constant along that direction.

To accomplish a polarization switch of
a QCA cell, an electron transfer between
the input dots must produce an opposite
transfer of an electron between the ourput
dots. The gate biases for the double dot set
the working point V0, V0 to the center
of the transition border (T1-T2) in the
absence of an input signal. The cell is then
in its most symmetrical state, and in the
absence of an input signal the two polar-
izations are equally probable. An input
“push-pull” signal (+AV, = —AV}) add-
ed to the driver gates polarizes the input
dots, which in turn polarizes the output
double dot. A polarization change in the
output double dot corresponds to a move-
ment of the entire honeycomb pattern
along direction E relative to a fixed work-
ing point V0, V2. Electron switching in
the output double dot takes place each
time the border (T1-T2) crosses the work-
* ing point. The ability to produce and de-
tect a polarization switch of the output
dots, induced by a single electron transfer
in the input dots, demonstrates a function-
ing QCA cell.

In this experiment, we determined the
charge state of the output double dot by
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measuring its conductance, which re-
quired a sweep of V- and V. To prevent
these voltages from affecting the input
dots as a result of parasitic capacitance, we
applied cancelation voltages, with polari-
ties opposite to Vs and Vp, to gates A and

Although the input dots were not con-
nected by a tunneling junction (Fig. 1B),
by carefully controlling the charge on dots
D1 and D2 we duplicated the behavior of
the input double dot of a full four-dot
QCA cell. We could not actually switch
an electron between the input dots, but,
by applying biases with opposite polarities
to gates A and B, each time an electron
was removed from one input dot, an elec-
tron was added to the other, mimicking an
electron transfer in an input double dot.
The advantages of having two separate
dots as an input stage of a QCA cell are
that each dot can be individually mea-
sured and the charge of each dot can be
individually controiled. In this way, addi-
tion and removal of electrons in the input
dots were easily synchronized during scan
of the drivers.

As mentioned above, transfer of an
electron’ between input dots produces a
shift of the entire charging diagram of the
output double dot along direction E. To
observe this shift, “snapshots” of the con-
ductance Gyyupie gl Vor Vo) were taken
for different push-pull (+AV, = —AVg)
settings on the drivers. The potential on a
metal dot in the Coulomb blockade re-

10 15 20

Ve (mv)

Fig. 2. Charging diagram of output double dot
with AV, = —AVy = —0.67 mV (A) and AV, =
—AVg = +0.67 mV (B). These values correspond
to the maximum shift of the honeycomb (Fig. 1D)

induced by an electron transfer in input dots. Ar-
rows show the direction of honeycomb motion.
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Fig. 3. (A) Experimental (A) and theoretical (—)
honeycomb shift as a function of driver voltages
V, = —Vg. Electron exchange occurs when the
border crosses zero. Theory uses a temperature
of 50 mK. (B) Conductance through input dot D1
as a function of driver voltage.

gime changes linearly as a function of gate
voltage, with an abrupt shift when the
electron population of the dot changes
(6). Thus, the potentials on the input dots
oscillate in a sawtooth pattern with driver
voltage, resulting in sawtooth-like shifts of
the honeycomb. We observed a slow shift
of the border corresponding to a gradual
increase of the potential on the input dots
followed by an abrupt “reset.” Two snap-
shots were taken at the extremes of the
shift with an amplitude of ~370 pV (Fig.
2).

We measured the shift of the honey-
comb border while sweeping gates A and B
over a voltage that was sufficient for sev-
eral electrons to transfer between the in-
put dots. The measured border shift with
respect to a fixed working point V0, V,°
as a function of the driver voltage (+V

‘and —Vy) is shown in Fig. 3A. A periodic

abrupt shift in the border position oc-
curred each time an electron switched in
the input dots {indicated by peaks in con-
ductance through the input dots (Fig. -
3B)], confirming that the shift was due to
a single electron transfer. A parasitic cou-
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pling from gates A and B to the ourput dots
added a monotonic term to the border shift,
but its magnitude was smaller than thar of
the periodic shift over the voltage range of
one electron switch in the input dots.

We compared the observed border shift
with theoretical results (Fig. 3A), which
include cancelation voltages and all exper-
imentally determined capacitances. The
theoretical results were obtained by mini-
mizing the classical electrostaric energy for
the array of islands and voltage leads. The
full-capacitance matrix was included, and
the minimum energy charge configuration
was calculared subject to the condition that
island charge be an integer multiple of elec-
tronic charge. Finite temperature effects
were obtained by thermodynamic averaging
over all nearby charge configurations. Ex-
periment and theory match very well with
only the substrate background charge and
temperature as fitting parameters. The
background charge adds a random offset to
the position of the border but does not
change the magnitude or period of the ob-
served shift. The best fit to experiment is
obtained for a temperature of 50 mK. The
discrepancy between this and the base tem-

50

Voa (1V)

Qle

Qle

Vy=-Vg (mV)

Fig. 4. (A) Voltage on dot D3 of output double dot
as a function of driver voltage V,, = ~Vjg. Triangles
are experimental data, and solid line represents
theoretical values at 50 mK. For reference, theo-
retical data at 0 K {dotted line) are shown. (B)
Calculated charge on dots D3 and D4 as a func-
tion of driver voltage for Cpypn, = Cppps = 0.65

. e/mV (experimental value). Solid line represents
charge on dot D3 at 50 mK, dashed line is charge
on dot D4 at 50 mK, and dotted line is charge on
D3 at O K. (C) Calculated charge on dots D3 and
D4 as a function of driver voitage for Cy,p, =
Co204 = Ciynciion = 2.1 &/mV. Solid line is charge
on dot D3 at 50 mK, and dashed line is charge on
dot D4 at 50 mK.
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perature of the dilution refrigerator (15
mK) most likely occurs because of heating
of the electron subsystem by electromagnet-
ic and thermal noise sources (7) and the
applied 4-uV excitation. This effect is com-
mon in transport experiments at tempera-
tures below 100 mK (6, 7).

To show that the observed border shift
represents a polarization switch of the cell
at finite temperature, we combined the
results of the border-shift measurements
(Fig. 3) with measurements of the electro-
static potentials of the double dot. The
electrostatic potential of each dot in the
double dot was measured with the same
device but with D1 and D2 as electrome-
ters (8). The result is shown in Fig. 4A,
where we plot electrostatic potential on
dot D3 as measured by electrometer D1,
together with theoretical calculations of
the same potential at 0 and 50 mK, as a
function of driver voltage V. The calcu-
lated excess charge on islands D3 and D4
of the double dot at 50 mK and, for refer-
ence, the charge on D3 at 0 K are indi-
cated in Fig. 4B. Charge switching occurs
at V, ~ —3.8 mV, corresponding to an
electron switch in the input dots. An in-
put voltage swing AV, = —AVof 1.3 mV
is sufficient for nearly complete transfer of
an electron from one output dot to the
other. An increase in coupling capaci-
tance Cpp; = Cpyps would lead to a
more complete electron transfer, as shown

in the theorerical plot (Fig. 4C), where we
set the coupling capacitance to be equal to
a junction capacitance. The data of Fig. 4
confirm that the experimentally observed
honeycomb shift represents the polariza-
tion change of a functioning QCA cell.
The QCA architecture is a break from

the FET-based paradigm of digital logic.
Logic levels are encoded no longer as volt-
ages on capacitors, which must be charged
and discharged by current switches, but
rather as the positions of electrons within a
cell. The scalability of QCA offers the fu-
ture possibility of functional devices that, at
the molecular level, can operate at room
temperature.
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Electrostatic Formation of Coupled Si/SiO,
| Quantum Dot Systems

PER HYLDGAARD*, HENRY K. HARBURY and WOLFGANG POROD

Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556

We present three-dimensional numerical modeling results for gated Si/SiO, quantum
dot systems in the few-electron regime. In our simulations, the electrostatic confining
potential results from the Poisson equation assuming a self-consistent Thomas-Fermi
charge model. We find that a very thin SiO, top insulating layer allows an effective
control with single-electron confinement in quantum dots with radius less than 10nm
and investigate the detailed potential and resulting charge densities. Our three-
dimensional finite-element modeling tool allows future investigations of the charge
coupling in gated few-electron quantum-dot cellular automata.

Keywords: 3D simulation and modeling, finite element method, silicon/silicon-dioxide quantum

dots, quantum-dot cellular automata

We present numerical simulations for electrostati-
cally confined few-electron quantum dot systems in
the technologically important Si/SiO, material
system. Our emphasis is modeling a possible so-
called Quantum-dot cellular automata (QCA) struc-
ture [1] in which a bi-stable occupation by two
excess electrons in a small and strongly charge-
coupled quantum-dot system defines logic 0/1.
The bottom panel of Figure 1 shows a schematic
of the Si/SiO, material system: a thin silicon-
" dioxide layer serves as excellent insulation of the
bottom silicon slab from the set of top gates.
Applying finite biases at these gates allows the
formation of electrostatically confined quantum

*Corresponding author.

dots just below the heterostructure interface (at
z=7z;). Mesoscopic transport investigations in
gate-induced quantum-dot arrays [2] documents
the feasibility of fabricating few-electron quan-
tum-dot systems in the Si/SiO, material system.
This development has in turn resulted in a
proposal for room-temperature single-electron Si/
SiO, memory cells [3].

Previous (two-dimensional) modeling results
[4, 5] of few-electron Si/SiO, quantum dot systems
exploited an axial symmetry to investigate the
electrostatic confinement within an individual dot.
Encouraged by recent three-dimensional modeling
of larger quantum-dot systems [6] we investigate
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FIGURE 1 Schematics of possible gate-confined Si/SiO,
quantum-dot cellular automata (QCA) The lower panel shows
material composition: thin (5 nm) SiO, insulating layers grown
on a Si block with an unintentional p= 10> cm™> p-doping. Top
gates define quantum dot system just below the hetero-interface
at z=z,. The upper panel illustrates potential QCA cell
formation: group of four positive small attractor gates (shaded
circles) from charge-coupled system of close quantum dots. The
entire QCA cell is surrounded by negative depletion gate (also
shaded) to enhance confinement.

here a possible realization of a Si/SiO, quantum-
dot cellular automata.

The upper panel of Figure 1 shows schematics of
the small but experimentally accessible top-gate
geometry assumed for our model Si/SiO, QCA
system. A negative depletion gates (shaded) sur-
rounds a group of four positive attractor gates
(shaded circles) with a r= 10 nm radius and mutual
separation of 30 nm. The attractor gates are biased
to about 1V to ensure a single-electron equilibrium
occupation in each of the four electrostatically
confined quantum dots. For the top silicondioxide
layer we assume a 5 nm thickness. o

In our T=100K simulations, the confining
potential is obtained from the Poisson equation
within a self-consistent Thomas-Fermi charge
model. The silicon is assumed to have a small
unintended but fully jonized doping, p=10"cm™>
and to ensure convergence we investigate a 1.5nm
thick bottom slab with in-plane extension of
approximately 300 nm by 300 nm. The top metal
depletion and attractor gates are described by
Dirichlet boundary conditions. For the exposed
SiO, surface we assume for simplicity a potential
fixed at the mid-gap SiO, value, that is, again a
Dirichlet boundary condition.

Our finite-element calculation uses a 129 by 129
nonuniform grid to allow a 1 nm resolution from
the surface and well below the Si/SiO, interface,
that is, around the quantum dot system. The top
panel of Figure 2 shows how most nodal layers (at
constant z) are connected in a mesh with alternat-
ing tetrahedron orientation to eliminate a geome-
trical bias. The bottom panel of Figure 2 illustrates
the repeated thinning of our finite-element mesh
undertaken deep below the interfaces where a high
in-plane resolution is no longer needed. However,
our numerical simulation still involves 6x10°
nodal points for which we determine the electro-
static potential within the self-consistent Thomas
Fermi screening model. Using the Newton-Ralph-
son procedure we solve in each iteration the
resulting huge linear system using a quasi-minimal
residual implementation [7).

Figure 3 shows our finite-element determination
of the electron potential and charge distribution
along the interface (z=z) for our possible QCA
realization. The electron confinement potential
(top panel) is calculated relative to the Fermi
energy with negative values corresponding to a
strongly enhanced electron concentration ne (bot-
tom panel). Note how the thin silicon-dioxide top
layer allows a very well-defined set of quantum
dots with a finite inter-dot potential barriers. The
total equilibrium occupation is set to exactly four
electrons and the strong Coulomb blockade effect
will prevent multiple occupation of the individual
quantum dots.
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FIGURE 2 Three-dimensional finite-element modeling of
gated Si/SiO, quantum-dot systems. The upper panel shows
tetrahedron-based mesh with alternating cell orientation used in
most in-plane layers (i.e., with constant z) to eliminate geo-
metric bias. The lower panel illustrate repeated mesh thinning at
layers deep below the interface (z < zo) used to obtain a factor-
of-two reduction in numerical complexity.

Figure 4 shows our modeling results for the
simpler double-quantum-dot system in which we
are preparing to investigate the mutual charge
coupling between the quantum dots. We assume
again r=10nm attractor gates with a mutual
separation of 30 nm and adjust the positive bias to
achieve a single-electron equilibrium occupation of
each of the quantum dots. The upper panel shows
the variation of the confinement potential both
along the axes (x) connecting the two quantum
dots and in the growth direction (z). The hetero-
structure-cut panel illustrates the excellent top-
gate control of the electrostatic potential into the
Si/SiO;, slab well below the heterostructure inter-
face, z=1z,.

The lower panel of Figure 4 shows the corre-
sponding equilibrium charge distribution, ne.

Intertace Potanhai
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FIGURE 3 Electron potential and charge distribution of
possible QCA cell at the heterostructure interface (==z).
Potential is calculated for an experimentally accessible gate
geometry: four attractor gate of radius = 10nm with mutual
30nm separation. The upper panel shows potential dips
(measured relative to Fermi energy) with corresponding
contour plot and illustrates the crisp gate control allowed by
the thin SiO, top layer. The electron potential confines in
equilibrium exactly four electrons with very well-defined charge
distribution ny (lower panel).

Note that this electron distribution, i.e., the
equilibrium quantum dot, is confined within 1nm
of the interface and about 5 nm of the attractor-
gate center. Future modeling will investigate the
charge coupling of such quantum-dot disks in the
presence of the attractor and depletion gates.

In summary, we have presented three-dimen-
sional finite-element calculations for gate-confined
few-electron Si/SiO, quantum-dot systems. We
have documented the feasibility of crisp electro-
static gate control for also few-electron quantum-
dot systems and have investigated the detailed
charge distribution and confinement potentials.
Our modeling tool allows future investigations of
charge coupling in few-electron quantum-dot
cellular automata structures.
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FIGURE 4 Growth direction (z) variation of confinement
potential (upper panel) and corresponding (equilibrium) charge
distribution (lower panel) in simpler double-dot model system.
This system is defined by two r=10nm attractor dots also with
a mutual separation of 30 nm. All z-positions are given relative
to the interface z=z,. Note that the equilibrium electron
distribution n. is confined within 1nm of the interface and
about 5nm of the attractor-gate center.
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The electrostatic interaction between two capacitively coupled, series-connected metal double dots " -

is studied at low temperatures. Experiment shows that when the Coulomb blockade is lifted, by
-applying appropriate gate biases, in both double dots simultaneously, the conductance through each
‘double dot becomes signiﬁéantly lower than when only one double det.is conducting a current. The
conductance lowering seen in interacting double dots is compared to that caused by an external ac
modulation applied to the double-dot gates. The results suggest that the conductance lowering in
each double dot is caused by.a single-electron tunneling in the other double dot. Here, each double

dot responds to the instantaneous, rather than average, potentials on the other double dot. This leads -
" to correlated electron motion within the system, where the position of single electron in one double
dot controls the tunneling rate through the other double dot. © 1 998 American Institute of Physics.

[S0003-6951(98)04445-3] -

In the last few years, much attention has been given to
coupled Coulomb blockade systems; series and parallel con-
nected metal and semiconductor systems were studied in
‘various aspects.l Correlated transport in capacitively coupled
Coulomb blockade systems was studied recently both
theoretically? and experimentally,’ but the discussion was
limited to the second-order (cotunneling) transport processes.
Another example of a system utilizing correlated tunneling
processes in coupled quantum dots is the basic cell of
quantum-dot cellular automata (QCA).* The basic cell of
QCA consists of four dots situated at the corners of a rect-
angle, and charged with two excess electrons. Due to the
Coulomb repulsion, the electrons stay in the two possible
diagonal positions, which can be switched by applied input
signal. A functional QCA cell was first demonstrated in Ref.
5. More recently, the cell consisting of the two identical ca-
pacitively coupled double dots (DDs), was studied.® In addi-
tion to the possible applications, a QCA cell is an interesting
model system allowing us to study interaction and correla-
tion effects of single electrons. In this letter, we report an
experimental study of correlated electron transport in a QCA
cell described by Amlani et al®

In contrast to previous work,>> which studied cotunnel-

ing in a similar system, in this letter, we study the interaction
between DDs in the regime when single-electron tunneling
occurs in both DDs simultaneously. This is accomplished by
applying appropriate biases to the gates controlling the
charge state of the system, so that both of the DDs are in the
transitional state. We define a transitional state for a DD as a

charge state where, if no source-drain bias is applied, an
+ ~-excess electron bounces between dots, spending half of its

time on each of the dots. At finite temperature conductance
through the DD in this state is nonzero due to a contribution
to the conductance through excited states. We found that if
both DDs are in the transitional state the conductance
through each DD becomes significantly lower than when

9Electronic mail: orlov.1 @nd.edu

0003-6951/98/73(19)/2787/3/$15.00
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only one DD is in its transitional state, with the other DD
electrons “‘locked’’ by Coulomb blockade. To study the ori-
gin of this conductance reduction, we compare the conduc-
tance lowering observed for both DDs in the transitional
state to that caused by an external ac modulation applied to
the gates of one DD in the transitional state. The result sup-
ports the model that the conductance lowering for the DD in
the transitional state is caused by the single-electron tunnel-
ing in the other DD. For noninteracting DDs, the conduc-
tance is limited by the tunneling rate of electrons through the
DD, while in coupled DDs the turmeling rate is modified by
the additional requirement that the excess electron on the
other DD must be in the proper position before tunneling can
take place. Thus, tunneling events in both DDs are strongly
correlated and position of a single electron in one DD con-
trols the tunneling rate in the other DD. The most interesting
fact is that the conductance in one DD responds to the in-
stantaneous potential changes on the other DD. The fre-
quency of that process is determined by the single-electron
tunneling rate, and is greater than 20 MHz even at mil-
likelvin temperatures. On the contrary, the average potential
cannot affect the tunneling in the other DD, since it is zero at
the transitional state.” This shows that coupled quantum dots
can respond to rapidly changing input voltages, which sug-
gests that the operating frequency of devices such as QCA
can be very high.

Figure 1(a) shows the scanning electron microscopy
(SEM) micrograph of the device; schematic diagram of the
device and experimental setup is shown in Fig. 1(b). The
device under study consists of two pairs of metal (Al) islands
(dots)—D D, and D3 D, connected in series by tunnel junc-
tions. The DDs are electrostatically coupled to each other by
capacitors C,. AVAIOx/Al tunnel junctions are fabricated on
an oxidized Si substrate using electron beam lithography and
shadow evaporation.8 The area of the junctions is about 50
X 50 nm?. Measurements were performed in a dilution re-
frigerator with a base temperature of 10 mK.

Conductances of each DD were measured simulta-

© 1998 American Institute of Physics
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FIG. 1. (a) SEM micrograph of the device. (b) Schematic diagram of the

device and experiment. (c) Contour plot of conductance through a double -

dot DD, as a function of gate voltages V; and Vy; (n3,n,) is the number
of excess electrons on dots D3 and D,.

neously using standard ac lock-in technique with 5 uV ex-
citation, and a magnetic field of 1 T applied to suppress the
superconductivity of Al Capacitances of the circuit (C;
~]1.44e/mV, C,~0.9e/mV, C,~0.45¢/mV) were deter-
mined from periods of Coulomb blockade oscillations and
I-V measurements.® To suppress the effect of parasite
crosstalk capacitances between dots and nonadjacent gates,
we used a charge cancellation technique described
elsewhere.!°

To understand the experiment, we need to look at the
charging processes for one DD. By measuring the conduc-
tance through a DD as a function of the voltages applied to
the DD gates V3 and V,, (we will consider DD D;D,, but
DD, is similar), we can determine the electron charge con-
figuration within the DD. A contour plot of the conductance
through D3D, as a function of gate voltages V5 and V, is
shown in Fig. 1(c). At low temperatures (kT<<E,, where
E_,~100 pV is the charging energy of D;D,) current flows
through a DD only at the settings of the gate voltages where
the Coulomb blockade is lifted. Due to capacitive coupling

between dots each conductance peak splits in two.'! Dashed
" lines in Fig. 1(c) delineate the regions where a particular
configuration (rn3,n4) is the ground state, with n3 and ng4
representing the number of excess electrons on dots D5 and
D,, respectively.!! An exchange of an electron between the
two dots occurs along diagonal direction Ve, while total
charge on DD, remains constant along this direction.

As mentioned above, the conductance remains nonzero
in the middle of the split peak at 50 mK (which we believe is
the actual electron temperature in our experiment) due to a
contribution to the conductance through excited states.
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FIG. 2. Conductance through the D3D, along Vy,, for different charge
states of DD, : dashed line—(n,n,); dotted line—(n,+ 1, n,—1); solid
line—transitional state.

Therefore, the region between each split peak forms a saddle
point in G — V3~ V, space, which shows up as a conductance
peak along Vg, on Fig. 1(c). We use this peak as a marker,
which corresponds to a border between states with different
electron configurations. We will concentrate on the transition
region between the two charge configurations (n3,n4) and
(n3+1, ng—1). To set a DD in the transitional state, the
working point [V3,V9 in Fig. 1(c)] must be at the saddle
point of a split peak, on the border between two charge con-
figurations (ni,nj) and (n;+1, n;j—1), where i,j=1,2 and
3,4.

Each time an electron hops from one island of a DD to
the other, the electrostatic potential on the island losing the
electron becomes more positive and the potential on the is-
land gaining that electron becomes more negative with re-
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FIG. 3. Conductance peak height as a function of charge variation for DD
D3Dy at Vg =0, T=10 mK, f,,,¢=335 Hz. V|,V are set to lock electrons
on DD, in the Coulomb blockade. Charge coordinate of the cross is the
theoretically calculated charge variation produced by a single electron tun-
neling from dot D, to D,. Insert: Potential on D3 vs Vi, : solid line—
theory for 0 K, dashed line—theory for 50 mK, crosses show potential
difference extracted from the external modulation experiment.
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spect to ground. On average at the saddle point of a split
peak, the theoretically calculated excess occupation of each
dot is 50% with a voltage phase difference of 180° between
them.” In the transitional state, the potential on each dot as a
function of time can be viewed as a series of voltage
“‘pulses’’ with amplitude 6V, corresponding to the pres-
ence or absence of an electron. The ‘‘duty cycle” of these
pulses depends on Vo, . For Vi, =0, the duty cycle is 50%,
since an electron has an equal probability to be at either dot
of DD. The frequency of the pulses is defined by single-

*- electron tunneling rate I'=kT/e?R ; (where Rj~1-M( is the
resistance of a tunnel junction) and for 7=50 mK is about
20 MHz.

Therefore, this situation can be viewed as if the poten-
tials on one DD act as a time varying effective gate voltages
for the other DD. On the charging diagram in Fig. 1(c), the
effect of such switching potential on the adjacent DD corre-
sponds to the two settings of effective diagonal gate bias
OV giag=E[(+ Vo) 2+ (= Vye)?]"?, where +6Vyy is a
change of the electrostatic potential on the dot losing and
— 8V 4o On the dot gaining the electron (we define V=0
for V3= V3, V,= Vg). In response to the instantaneous
change of the potentials * §Vy;,, on DD, the electron tun-
neling rate in D3D, reduces as evidenced by the reduction of
conductance in Fig. 1(c). In effect, a negative potential on
dot D, due to the presence of an electron, prevents another
electron from tunneling onto D5 until the first electron
moves to D,. As a result conductance of D3D, drops com-
pared to the case when charge on DD, is locked and poten-
tials on D; and D, are fixed, as seen in Fig. 2. At the same
time, if conductance through one DD were affected by only
the average potential on the other DD, no conductance re-
duction is expected. Thus, according to the experiment of
Fig. 2, transport of electrons through the system when both
DD:s are in the transitional state becomes strongly correlated,
with the probability for an electron to tunnel through one DD
dependent on the position of the excess electron on the other
DD. The effect of conductance reduction is observed in all
samples under study (a total of three samples). The correla-
tion strength and conductance reduction depend on tempera-
ture and disappear at kT~E_.’

At Vi,,=0, we can model the conductance modulation
caused by a single-electron switching in DD, by applying a
square-wave modulation with a 50% duty cycle to the gates
V5 and V,. The applied signals must be out of phase by 180°
to imitate the electron hop from D, to D,. The potential
difference produced by DD, is §V= VD|_VD,’ and the
charge which affects the D3D, is therefore 6Q=6VC,.. To
mimic the same amount of charge variation, Q= 5V3C o
=8VC,, asignal of 6V,=6VC, /C, must be applied to the
gates. Gate voltages on D;D, are set to lock electrons there
in Coulomb blockade to prevent any effects in D3;D, caused
by single-electron tunneling in D D,.

We apply a square-wave differential modulation signal
between the gates V5 and V,, with a frequency of 10010000
Hz, much lower than a single-electron tunneling rate. The
result of this gate modulation experiment is shown on the
Fig. 3 where the conductance of the D3D, measured at
Viiag=0 is plotted versus the amplitude of applied charge
modulation. The cross in Fig. 3 marks the conductance low-

&
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ering observed in the experiment of Fig. 2. The observed
conductance lowering was frequency independent up to 10
kHz (cutoff frequency of our experimental setup). The posi-
tion of the cross confirms that the conductance lowering oc-
curs due to the instantaneous potential variation caused by
electrons tunneling through the other DD. The insert in Fig.
3 shows the theoretically calculated dot potential versus Vg,
at 0 K. The theoretical results are obtained by minimizing the
classical electrostatic energy for the array of islands and volt-
age leads. Finite temperature smears the transition region,
but for Vi, =0, the instantaneous values of potential remain
the same, jumping between ‘‘high’’ and “‘low’’ levels, while
the average potential is zero. The crosses in the insert of Fig.
3 mark the amplitude of the normalized external modulation
at which the conductance peak height matches that observed
in Fig. 2 and shows good agreement with theory. Therefore,
the external modulation experiment can be used to measure
the potential difference between the dots, and provides fur-
ther evidence that the conductance reduction is due to instan-
taneous potential variations.

In summary, we report the observation of correlated
transport in the Coulomb coupled double dots. We found that
when single-electron tunneling takes place in both DDs si-
multaneously the conductance through each of the interact-
ing DDs drops. We explain this conductance lowering by
electrostatic interactions between DDs, where the conduc-
tance through each of the DDs is affected by instantaneous
changes of electrostatic potentials created by electrons tun-
neling through the dots in the other DD. We confirm this by
an experiment where square-wave modulation was applied
between the gates of DD to simulate potential changes
caused by single-electron tunneling in the other DD, and find
a good agreement with theoretical calculations. Our results
suggest that coupled DD can respond to rapid changes of
input voltages, implying very high operating frequencies of
devices based on quantum dots, such as QCA.
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Digital Logic Gate Using
Quantum-Dot Cellular
Automata

Islamshah Amlani,™ Alexei O. O‘rlov,1
Geza Toth,"? Gary H. Bernstein,’ Craig S. Lent,’
'~ Gregory L. Snider’

A functioning logic gate based on quantum-dot cellular automata is presented,
where digital data are encoded in the positions of only two electrons. The logic
gate consists of a cell, composed of four dots connected in a ring by tunnel
junctions, and two single-dot electrometers. The device is operated by applying
inputs to the gates of the cell. The logic AND and OR operations are verified
using the electrometer outputs. Theoretical simulations of the logic gate output
characteristics are in excellent agreement with experiment.

Field-effect transistors (FETs) are the founda-
tion of present digital logic technologies such as
complementary metal oxide semiconductors.
Despite vast improvements in integrated circuit
fabrication technology over the past three de-
cades, the role played by the FET has remained
that of a current switch, much like the mechan-
ical relays used by Konrad Zuse in the 1930s.
By adhgring to strict scaling rules, FETs have
maintained acceptable performance despite tre-
mendous reductions in size, permitting the mi-
croelectronics industries to make phenomenal
increases in device density and computational
power. As device feature sizes approach quan-
tumn limits, fundamental effects will make fur-
ther scaling difficult, requiring a departure from
the FET-based paradigm and necessitating rev-
olutionary approaches to computing. The ap-
proach must be compatible with the inherent
properties of . nanostructures, as it should
exploit the effects that accompany small
sizes. An alternate paradigm is that of
quantum-dot cellular automata (QCA) (/-
3), which uses the arrangements of individ-
ual electrons, instead of currents and volt-
ages, to encode binary information.

QCA is a nanostructure-compatible compu-
tation paradigm that uses arrays of quantum-dot
cells to implement digital logic functions. A key
element of this paradigm is a QCA cell, which
consists of four dots located at the vertices of a
square (Fig. 1A); such a cell was experimental-
ly demonstrated (4). When the cell is charged
with two excess electrons, they occupy diago-
nal sites as a result of mutual electrostatic re-
pulsion. The two diagonal polarizations are en-
ergetically equivalent ground states of the cell,

and are used to represent logic 0 and logic 1. A
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polarization change in a QCA cell is induced by
causing an electron to switch positions in one
set of dots. thus inducing an opposite electron
switch in an adjacent set of dots, resulting in a
change of the electron arrangement from one
diagonal to the other.

The fundamental QCA logic device is a
three-input majority logic gate (Fig. 1B) con-
sisting of an arrangement of five standard cells:
a central logic cell, three inputs labeled A4, B,
and C, and an output cell. The polarization
states of inputs .4, B, and C determine that of
the logic cell, which can assume either polar-
ization, while the output polarization follows
that of the logic cell. In operation, the polariza-
tion of the logic cell becomes that of the ma-
jority of the three input cells. QCA logic gates
can be cascaded, so that in a more complex
QCA circuit, the three inputs would be driven
by the outputs of previous gates. Similarly, the
output of the majority gate can be connected to
drive a subsequent stage of logic gates (3).

A majority gate can be programmed o act

Fig. 1. (A) QCA cell A

as an OR gate or an AND gate by fixing any
one of the three inputs as a program line. If the
programming input is a 0, the AND operation is
performed on the remaining two inputs. If the
programming input is a 1, the OR operation is
performed on the other two inputs (Fig. [C).

Although QCA architecture can be imple-
mented in many systems, we choose the metal
tunnel junction implementation described by
Lent and Tougaw (3). In our QCA system (Fig.
ID), the cell consists of four small Al islands
(“dots™), D, to D, connected in a ring by AIO,
tunne! junctions. In initial biasing of the cell,
two excess electrons enter the cell through-tun-
nel junctions, which for simplicity are not
shown. A complete schematic for a related
experiment has been published (4). Junction
capacitances C, are sufficiently small to ensure
charge quantization on each dot at cryogenic
temperatures (6). Each dot is also capacitively
coupled to a gate, via capacitance Cg, that
influences the charge state of its respective dot.
To determine the cell polarization. we measure
electrostatic potentials on islands Dy and D,
using capacitively coupled single dots, E, and
E,, as noninvasive electrometers (7, §).

Nanometer-scale A/AIO /Al tunnel junc-
tions are fabricated using the standard Dolan-
bridge technique (9). Aluminum islands and
leads are defined by electron beam lithography
and subsequent shadow evaporation processes
with an intermediate in situ oxidation step. The
experiment is performed in a dilution refriger-
ator with an ambient magnetic field of 1 T to
suppress the superconductivity of Al metal. All
relevant capacitances are extracted from mea-
surements of Coulomb blockade oscillations
(4), and are used in theoretical simulations of
the device characteristics using classical Cou-
lomb blockade theory. The effects of uninten-
tonal cross-talk capacitances between each
gate and all nonadjacent dots are compensated
using feedback circuitry ({/0).
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Fig. 2. Experimental
setup for majority gate
demonstration. Inputs
A, B, and C (shaded at
left) are replaced by
potential shifts on the
gates (shaded at right)
that are equivalent to
polarization states of
the input cells.

First, the logic cell is biased using gates 1 to
4 in an unpolarized state where logic | and 0 are
equally probable (4), and the electrometer out-
puts are set to 0 V for this condition. This
procedure also cancels the effect of the sub-
strate background charge. Figure 2 shows the
correspondence between the representation on
the left and the configuration of our majority
gate experiment on the right. Differential sig-
nals A (between gates 1 and 3), B (between
gates | and 2), and C (between gates 2 and 4)
constitute the inputs to the cenmal cell. The
negative (positive) bias on a gate, &~ ($7),

Fig. 3. Demonstration of majority gate
operation. (A to C) Inputs in Gray code.

mimics-the presence (absence) of an electron in

-

The first four and last four inputs illus-

the input dots, as shown by the shaded regions
in Fig. 2. The amplitudes of ™ and &~ are

trate AND and OR operations, respec-

tively. (D) Output characteristic of ma-
jority gate where t; = 20 sis the input =
switching period. The dashed line shows

carefully chosen to mimic the potentials due to
the polarization of an input cell while they
remain small enough not to change the number

the theory for 70 mK; the solid line
represents the measured data. Output
high (Vo) and output low (V5) levels

of excess electrons in the cell.
Differential signals 4, B, and C are con-
verted into logic levels 1 and 0 on the basis of

are marked by dashed lines.

the convention used in Fig. 1A. As dots D,

By, - By, (1Y)

and D, are coupled to only one gate electrode
each, voltages corresponding to inputs 4 and
B on gate 1, and inputs B and C on gate 2, are
added in order to mimic the effect of two
input dots. For instance, the input configura-
tion shown in Fig. 2 (4BC = 111) is achieved
by setting ¥, =207, ¥, = 20%, ¥; = ¥,
and ¥, = &~.

With inputs 4, B, and C traced as a function
of time (Fig. 3, A to C) according to the truth
table in Fig. 1C, the differential potential be-
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Fig. 4. (A) Differential potential change on the dots as an electron
switches from D, to Dj. The dashed line represents the differential
input voltage applied to gates 3 and 4 as a function of time. Solid
circles show the measured data and the solid line represents the
theoretical prediction for 70 mK; t, = 15 s. (B) Switching induced in
D,D, by two mechanisms. Solid circles show the measured differential

tween dots D, and D, ®p,, — 5, is measured
using the electrometers E, and E, (Fig. 3D).
(The transient characteristics are determined by
the time constant of our electrometer circuitry.)
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The theoretical results (dashed line in Fig. 3D)
are calculated for the electron temperature in
the experiment (70 mK), as determined from
the temperature dependence of Coulomb block-
ade oscillations (/7). Although no adjustable
parameters are used in the theory, the agree-
ment between the experimental and theoretical
results.is excellent. The output high (75,,) and
output low (¥, ) show a clear separation, as
required for digital logic, The first and last four
input steps are grouped separately, with 4 as the
programming input, to illustrate AND and OR
operations. The AND operation is carried out
for4 = 0, for which we see that the ourput is
high only when the remaining two inputs are
also high. The OR operation is performed when
A = 1, for which the output is high when either
of the other two inputs is high. These data
confirm majority gate operation and thus dem-
onstrate a logic gate that requires only two
electrons to function.

The gap between 75, and J5  would be
larger for either lower temperatures or smaller
capacitances. Thermal smearing of the charge
states of the dots results in a less than complete
polarization of the cell. Therefore, the perfor-
mance of the gate could be improved by low-
ering the temperature. However, a better way is
to reduce the dot capacitance (by reducing the
size of the dots), which will raise the energy of
the excited states. When all capacitances are
reduced by a factor of 10, the calculated output
characteristic shows increased separation be-
tween ¥, and ¥;, and negligible output devi-
ations for all input combinations. QCA logic
gates using a molecular implementation will
not only yield greater performance, but will also
operate at room temperature (/2).

Some key issues must be addressed to
determine the response of the majority gate
when it is integrated in a real QCA circuit. In
QCA arrays, each cell responds to the polar-
izations of neighboring cells. Therefore, we
must justify that the voltages applied to the
central cell gates in our majority gate exper-
iment produce the same effects as electrons
switching in neighboring cells.

We performed two experiments to demon-
strate that our input voltages have the same
effect as that of actual electron switching in
input cells 4, B, and C. First, we found the
potential swing due to an electron switching
from one dot to ancther. We applied a differ-
ential voltage between gates 3 and 4 (V; = -V)
to induce electron switching in D;D, (inset,
Fig. 4A). As an electron moves from D, to D;,
the potential of the bottom dot undergoes a
positive shift due to removal of an electron,
while the potential of the top dot undergoes a
negative shift due to addition of an electron.
The differential potential swing (®p, — Pp;)
for this switching is positive (Fig. 44), with
theory closely matching the measured data [the
calculated differential potential swing ($p, -
®,,) is the same when the bias is applied

between gates 1 and 2]. The input signals ap-
plied to the gates in the majority gate demon-
stration (Fig. 3) have the same amplitudes as
that shown in Fig. 44, .scaled by C/Cs to
compensate for differences in capacitance.

Next, to demonstrate that the application of
“simulated” dot potentials to the gates of the
cell mimics an electron switching in a neigh-
boring cell, we applied the differential potential
extracted in the previous experiment directly to
gates 3 and 4 (with the weighting factor C/C)
and measured the differential potentials be-
tween D, and D,. This result is compared to
that due to an actual electron switching in near-
by dots D,D,. Figure 4B shows the change in
differential potential of D,D, caused by the two
mechanisms as a function of time (insets, Fig.
4B), with the data confirming that the response
of D,D, is similar when switched by either the
simulated potential or a real electron. This is as
expected because charge modulations induced
on D,D, by the two mechanisms are the same;
that is, /,Cq = @p,C; and ¥,C; = Op,C)
These results confirm that using the simulated
dot potentials for the inputs in our majority gate
experiment is indeed a reliable indicator of how
a majority gate would respond when integrated
in a QCA circuit. '
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An introduction to the operation of quantum-dot cellular automata is presented, along with recent
experimental results. Quantum-dot cellular automata (QCA) is a transistorless computation
paradigm that addresses the issues of device density and interconnection. The basic building blocks
of the QCA architecture, such as AND, OR, and NOT are presented. The ‘experimental device is a
four-dot QCA cell with two electrometers. The dots are metal islands, which are coupled by

capacitors and tunnel junctions. An improved desi

gn of the cell is presented in which all four dots

of the cell are coupled by tunnel junctions. The operation of this basic cell is confirmed by the

externally controlled polarization change of the cell.

[S0021-8979(99)26608-X]

1. INTRODUCTION

For more than 30 years, the microelectronics industry
has enjoyed dramatic improvements in the speed and size of
electronic devices. This trend has long obeyed Moore’s law,
which predicts that the number of devices integrated on a
chip will double every 18 months. Adherence to this expo-
nential growth curve has been a monumental task requiring
rapid improvements in all aspects of integrated circuit (IC)
fabrication, to permit manufacturers to both shrink the size
of devices and increase chip size while maintaining accept-
able yields. Since the early 1970s the device of choice for
high levels of integration has been the field effect transistor
(FET), and while the FET of today is a vast improvement
over that of 1970, it is still used as a current switch much
like the mechanical relays used by Konrad Zuse in the 1930s.
At gate lengths below 0.1 um FETs will begin to encounter
fundamental effects that make further scaling difficult. A
possible way for the microelectronics industry to maintain
growth in device density is to change from the FET-based
paradigm to one based on nanostructures. Here, instead of

fighting the effects that come with feature size reduction,

these effects are used to advantage. One nanostructure para-
digm, proposed by Lent et al.,"* is quantum-dot cellular au-
tomata (QCA), which employs arrays of coupled quantum
dots to implement Boolean logic functions.>* The advantage
of QCA lies in the extremely high packing densities possible
due to the small size of the dots, the simplified interconnec-
tion, and the extremely low power-delay product. Using
QCA cells with dots of 20 nm diameter, an entire full adder
can be placed within 1 pm?

A basic QCA cell consists of four quantum dots in a
square array coupled by tunnel barriers. Electrons are able to
tunnel between the dots, but cannot leave the cell. If two
excess electrons are placed in the cell, Coulomb repulsion
will force the electrons to dots on opposite corners. There are
thus two energetically equivalent ground state polarizations,
as shown in Fig. 1, which can be labeled logic *0”’ and “‘1.”
Coulombic interactions between the electrons cause the cell
to exhibit highly bistable switching between these two polar-
izations. The simplest QCA array is a line of cells, shown in

0021-8979/99/85(8)/4283/3/$15.00
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Fig. 2(a). Since the cells are capacitively coupled to their
neighbors, the ground state of the line is for all cells to have
the same polarization. In this state, the electrons are as
widely separated as possible, giving the lowest possible en-
ergy. To use the line, an input is applied at the left end of the
line, breaking the degeneracy of the ground state of the first
cell and forcing it to one polarization. Since the first and
second cell are now of opposite polarization, with two elec-
trons close together, the line is in a higher energy state and
all subsequent cells in the line must flip their polarization to
reach the new ground state. No metastable state (where only
a few cells flip) is possible in a line of cells. A tremendous
advantage of QCA devices is the simplified interconnect
made possible by this paradigm. Since the cells communicate
only with their nearest neighbors, there is no need for long
interconnect lines. The inputs are applied to the cells at the
edge of the system and the computation proceeds until the
output appears at cells at the edge of the QCA array.
Computing in the QCA paradigm can be viewed as com-
puting with the ground state of the system. A computational
problem is mapped onto an array of cells by the placement of
the cells, where the goal is to make the ground state configu-
ration of electrons represent the solution to the posed prob-
Jem. Then computation becomes a task of applying a set of
inputs that put the system into an excited state, and then
letting it relax into a new ground state. For each set of inputs
a unique system ground state exists that represents the solu-
tion for those inputs. The mapping of a combinational logic
problem onto 2 QCA system can be accomplished by finding
arrangements of QCA cells that implement the basic logic
functions AND, OR, and NOT. An inverter, or NOT, is
shown in Fig. 2(b). In this inverter, the input is first split into

FIG. 1. Basic four-dot QCA cell showing the two possible ground-state
polarizations.

© 1999 American Institute of Physics
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FIG. 2. (a) Line of QCA cells. (b) QCA inverter. (c) QCA majority gate. (d)
Fanout. .

two lines of cells then brought back together at a cell that is
displaced by 45° from the two lines, as shown. The 45°
placement of the cell produces a polarization that is opposite
to that in the two lines, as required in an inverter. AND and
OR gates are implemented using the topology shown in Fig.
2(c), called a majority gate. In this gate the three inputs
““yote’’ on the polarization of the central cell, and the ma-
jority wins. The polarization of the central cell is then propa-
gated as the output. One of the inputs can be used as a
programming input to select the AND or OR function. If the
programming input is a logic 1 then the gate is an OR, but if
a 0 then the gate is an AND. Thus, with majority gates and
inverters it is possible to implement all combinational logic
functions. Memory can also be implemented using QCA
cells,” making general purpose computing possible.

Some additional explanation is necessary for the fan-out
structure shown in Fig. 2(d), which was also employed in the
inverter. When the input of one of these structures is flipped,
the new ground state of the system is achieved when all of
the cells in both branches flip. The problem is that the energy
put into the system by flipping the input cell is not sufficient
to flip cells in both branches, leading to a metastable state
where not all of the cells have flipped. This is not the ground
state of the system, but can be a very long-lived state, lead-
ing to erroneous solutions in a calculation. Avoiding these
metastable states is simply a matter of switching the cells
using a quasi-adiabatic approach, which keeps the system in
its instantaneous ground state during switching, thus avoid-
ing any metastable states. Details of quasiadiabatic switching
have been published previously.>® Quasiadiabatic switching
can be implemented in both semiconductor and metallic

QCA. systems.

II. EXPERIMENT

The experimental work presented is based on a QCA cell
using aluminum islands and aluminum-oxide tunnel junc-
tions, fabricated on an oxidized silicon wafer. The fabrica-
tions uses standard electron beam lithography and dual
shadow evaporations to form the islands and tunnel
jum:tions.7 The area of the tunnel junctions is an important

quantity since this dominates island capacitance, determining

the charging energy of the island and hence the operating
temperature of the device. For our devices the area is ap-
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proximately 60 by 60 nm, giving a junction capacitance of
400 aF. These metal islands stretch the definition of a quan-
tum dot, but we will refer to them as such because the elec-
tron population of the island is quantized and can be changed
only by tunneling of electrons.

We recently demonstrated the first step in the develop-
ment of QCA systems i.e., a functional QCA cell where we
can switch the polarization of a cell. This confirms that the
switching of a single electron between coupled quantum dots
can control the position of a single electron in another set of
dots.®® A simplified schematic diagram of our latest QCA
system is shown in Fig. 3. The four-dot QCA cell is formed
by dots D1-D4, which are coupled in a ring by tunnel junc-
tions. A tunnel junction source or drain is connected to each
dot in the cell. This implementation is an improvement over
earlier designs in that the tunnel junctions coupling D1-D3
and D2-D4 provide a capacitance more than twice as large
as the lithographically defined capacitance used previously.
A larger capacitance is expected to improve the bistability of
the cell. The two individual dots E1 and E2 are used as
electrometers. The device is mounted on the cold finger of a
dilution refrigerator that has a base temperature of 10 mK,
and characterized by measuring the conductance through
various branches of the circuit using standard ac lock-in
techniques. A magnetic field of 1 T was applied to suppress
the superconductivity of the aluminum metal. Full details of
the experimental measurements are described elsewhere 5!

Since the operation of a QCA cell depends on the posi-
tion of a single electron, it is necessary to track the position
of electrons within the cell. This can be done by two differ-
ent methods. One is to measure the conductance through
each pair of dots within the cell. A peak in the conductance
as the gate voltages are changed indicates that the Coulomb
blockade has been lifted for both dots simultaneously, and a
change in the dot population has occurred. The other way to
detect the change of an electron position within the cell is
using the electrometers E1 and E2,'! which are capacitively
coupled to the cell dots D3 and D4. A small potential change
in the dot being measured causes a change in the conduc-
tance of the electrometer. A decrease in the conductance of
the electrometer indicates a lower potential on the measured
dot, meaning that an electron has entered the measured dot.

QCA operation is demonstrated by first biasing the cell,
using the gate voltages, so that an excess electron is on the
point of switching between dots D1 and D2, and a second
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FIG. 4. (2) Conductance through dots D1 and D2. The peak occurs when the
electron moves from D2 to DI. (b) and (c) Electrometer conductance. A
drop in conductance occurs when an electron moves on to D4.

electron is on the point of switching between D3 and D4. A
differential voltage is then applied to the input gates V| and
V, (V,=—V,), while all other gate voltages are kept con-
stant. As the differential input voltage is swept from negative
to positive, the electron starts on D2, then moves from D2 to
D1, as indicated by the peak in the conductance through
D1-D2 seen in Fig. 4(a). This forces the other electron to
move from D3 to D4. Figure 4(b) shows the response of
electrometer E2, which is coupled to dot D4 When the elec-
tron switches from D2 to D1 there is a drop in the conduc-
tance of E2, indicating that an electron has moved from D3
to D4. This confirms the polarization change in the cell, and
demonstrates QCA. operation.

Snider et al. 4285

1. SUMMARY

A device paradigm based on QCA cells offers the oppor-
tunity to break away from FET based logic, and to exploit
the quantum effects that come with small size. In this new
paradigm, the basic logic element is no longer a current
switch but a small array of quantum dots, and the logic state
is encoded as the position of electrons within a quantum dot
cell. We have demonstrated the operation of a QCA cell

. fabricated in aluminum islands with aluminum oxide tunnel

where the polarization of the cell can be switched by applied
bias voltages. QCA cells are scalable to molecular dimen-
sions, and since the performance improves as the size
shrinks, a molecular QCA cell should operate at room tem-
perature. While the device demonstrated here operates using
single electrons, an implementation of QCA using magnetic
domains should also be possible.
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Experimental demonstration of a leadless quantum-dot cellular

automata cell
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We present the experimental characterization of a leadless (floating) double-dot system and a
leadless quantum-dot cellular automata cell, where aluminum metal islands are connected to the
environment only by capacitors. Here, single electron charge transfer can be accomplished only by
the exchange of an electron between the dots. The charge state of the dots is monitored using metal
islands configured as electrometers. We show improvements in the cell performance relative to
leaded dots, and discuss possible implications of our leadless design to the quantum-dot cellular
automata logic implementation. © 2000 American Institute of Physics. [S0003-6951(00)00731-2]

Recently, quantum-dot cellular automata (QCA) has re-
ceived significant attention. In this transistorless approach to
computation, logic levels are represented by the configura-
tions of single electrons in coupled quantum-dot systems.! ™
The simplest structure in this paradigm, a cell, consists of
four dots located at the vertices of a square sharing two elec-
trons between them. Due to electrostatic repulsion, the two
electrons in each cell are forced to the opposite corners along
one of the two diagonals. These diagonally aligned charge
states are the ground states of the four-dot system, and are
used to encode logic values ‘‘0°’ and ‘‘1.”” Since the dot
sizes can ultimately be as small as single molecules, the
QCA architecture offers ultrahigh device density that is pre-
dicted to be both faster and more energy efficient than con-
ventional complementary metal-oxide—-semiconductor tech-
nology.

In the last few years, significant progress has been made
toward the realization of basic QCA elements. So far, a fully
functional QCA cell* and a small chain of cells forming a
binary wire® have been demonstrated. A QCA-based digital
logic gate that performs Boolean AND and OR operations
was also demonstrated.” Both theory and experiments sug-
gest that these cells can achieve high operating frequencies.®

A common feature of all QCA implementations reported
thus far is that the dots forming the cell were connected to
source and drain leads that act as electron reservoirs. This
was useful for the initial demonstration of QCA principles as
it allowed tracing of single electron motion between dots and
leads by monitoring the current through the source and drain.
In this paper, we present a different implementation of QCA
in which the dots are not connected to source and drain
leads. Excluding these leads not only greatly simplifies de-
vice design, fabrication, and measurement, but also simpli-
fies the interfacing of QCA arrays. These experiments dem-
onstrate single electron transfer in a system completely
galvanically decoupled from the environment.

The major difference between leaded and leadless dot

9Present address: Islamshah Amlani, Motorola Labs, 2100 East Elliot Road,
MD EL508, Tempe, AZ 85284.
YElectronic mail: ravi.k.kummamuru. | @nd.edu
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systems is that in leaded dots, electrons can be added or
removed from the source and drain leads while in leadless
dots, electrons can move only from one dot to another. This
basic difference is evident in their charging diagrams, which
identify stable charge regimes as a function of gate biases. In
a leaded system, the charging diagram can be obtained sim-
ply by measuring conductance through the coupled dot sys-
tern as a function of the two gate biases.” In a leadless sys-
tem, the subject of this paper, charge state of the dots can be
determined only by using external electrometers.

‘We present two different devices to show (a) the exter-
nally measured charging diagram of a leadless double-dot
system, and (b) QCA operation in a leadless cell. Both de-
vices are realized on an oxidized Si surface using standard
Al/AlO, tunnel junction technology pioneered by Dolan.!?
Aluminum islands and leads are patterned using electron
beam lithography with a subsequent shadow evaporation
process and an intermediate oxidation step. The islands in
QCA measurements act as dots, and in this paper we will use
these names interchangeably. The area of the fabricated tun-
nel junctions is typically 60X 60 nm?.
~ All measurements were carried out in a dilution refrig-
erator. The electron temperature of the device is 70 mK.5
The experiment was performed in a magnetic field of 1 T in
order to suppress the superconductivity of aluminum at mil-
likelvin temperatures. Standard ac lock-in techniques were
used for all measurements. The typical capacitance of our
tunnel junctions, extracted from the Coulomb gap of the
electrometers, is approximately 320 aF.!! Other lithographic
and parasitic capacitances are obtained from the Coulomb
blockade oscillations of electrometers as a function of vari-
ous gate biases.

Our first device consists of two small isolated metal is-
lands connected by a tunnel junction forming a double dot
[Fig. 1(a)]. No electrons can be added to or removed from
the double dot. However, electrons may be transferred from
one dot to the other by applying biases to the gate electrodes.
Each dot (labeled D, and D) is also capacitively coupled to
an electrometer.!? Figure 1(b) shows a measured charging
diagram of the floating double dot. The grayscale map rep-
resents the experimentally observed potential profile of dot

© 2000 American Institute of Physics
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FIG. 1. (a) Schematic diagram of a leadless double-dot system. D; and D,
are the two dots; E; and E, are the corresponding electrometers. (b) Charg-
ing diagram of a leadless double dot. The lighter shades represent higher dot
potential. The numbers in the parentheses represent the charge configuration
of the double dot.

D;. 13 The potential of the other dot D, is similar but has the
opposite phase. The dotted lines in Fig. 1(b) define the theo-
retically calculated borders between different charge states.
Since the only possible source of electrons for one of the
floating dots is the other dot, the only transitions possible are
those when one dot loses an electron and the other acquires
1t.

We define the state with no applied bias as the neutral
state with charge configuration (0,0) where there are no ex-
cess electrons on either of the dots (the charge configuration
of the double dot represents the number of excess electrons
in dots D; and D,, respectively). Let us consider transitions
along the V,;=—V, diagonal, which represents application of
a differential bias to the dots D; and D,. As the differential
bias is made sufficiently high to overcome Coulomb block-
ade in the double dot, one electron tunnels from D, to D,
thus changing the charge configuration to (1,—1). If we fur-
ther raise the bias applied to Dy, one more electron will be
lured onto D, from D,, changing the charge configuration to
(2,—2) and so on.

Next, we consider our leadless QCA cell [Fig. 2(a)]. The
cell consists of two capacitively coupled leadless (floating)
double dots. The charge state of each of the four dots is
monitored separately by the electrometers E;~E,. Figure
2(b) shows a scanning electron microscopy micrograph of a
leadless QCA cell. Due to the symmetry of the structure,
either of the double dots could be used as input or output, but
for clarity, we will refer to the double dot on the left-hand
side as the input double dot and the double dot on the right-
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FIG. 2. (a) Schematic diagram of a leadless QCA cell. D;~Dj are the four
dots, and E,—E, are the corresponding electrometers. (b) SEM micrograph
of the leadless QCA cell.

hand side as the output double dot. In the leadless implemen-
tation, QCA operation consists of causing an electron to
switch in the input double dot D,D,, which induces an elec-
tron to switch in the opposite direction in the output double
dot D3Dy. The charge configuration of DD, changes from
(0,0)—(1,—1), which induces a change from (0,0)
—(—1,1) in D;D,. This is actuated by applying a differen-
tial bias (with opposite polarities V{=—V,) to the input
double dot. Under the influence of the input bias, the poten-
tial of D, increases (the potential of D, decreases), until an
electron tunnels from D, to D, producing an abrupt potential
swing in the opposite direction. If the output double dot is
biased anywhere on the boundary between two charge states
[the dashed line in Fig. 1(a)}, the potential perturbation pro-
duced by an electron exchange in the input double dot will
cause an electron exchange in the opposite direction in the
output double dot. This is markedly different from the case
of QCA cell with leads, where many electron transitions are
allowed and the desirable transition occurs when the bias

_point is set within a very small range of bias voltages.

The results of the experiment are presented in Fig 3. The
solid line in Fig. 3(2) shows the potential variation of D, (the
change in potential of D, is similar but opposite in phase).
The signal varies in a sawtooth manner, with the sharp tran-
sition corresponding to the transfer of a single electron in the
input double dot from D, to D,. This transition causes the.
transfer of an electron in the opposite direction in the output
double dot (from Dy to D,,) as indicated by the solid line in
Fig. 3(b). Thus, the data shown in Fig. 3 demonstrate QCA
operation. The dashed lines in Figs. 3(a) and 3(b) show the

Downloaded 12 Jan 2001 to 129.74.23.174. Redistribution subject to AIP copyright, see hitp:/iojps.aip.org/apio/aplcpyrts.html.
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FIG. 3. QCA operation in a leadless cell. Measured (solid line) and calcu-
lated (dashed line) potential of (2) dot Dy, (b) dot D, with applied differ-
ential bias (Vi,=V;=—V3).

simulated dot potentials for the two dots for a device tem-
perature of 70 mK.

In Fig. 3 we notice that the potential swing in the output
dot D5 has a larger magnitude than that in the input dot D;.
This effect arises due to thermal smearing. At 0 K the poten-
tial of the input dots, resulting from a linearly varying input
bias, has a sawtooth shape. However, the potential on the
output dots is affected only by the potential on the input dots
and hence has a quasisquare wave shape®* with the same po-
tential swing. At low temperature [0<kT<Eyn Ref. 14]
thermal smearing causes a greater reduction in the potential
swing in the input double dot than in the output double dot
due to the difference in the shapes of the two wave forms.
This results in larger amplitude of potential in the output dots
than in the input dots. This effect was not observed in our
previous experiments on QCA cells with leads.*"® In the pre-
vious experiments, dots forming the cell were connected to
source and drain leads by tunnel junctions, resulting in larger
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dot capacitances due to the extra junctions and correspond-
ingly smaller kink energy compared to the current device.
Due to the smaller kink energy, the potential swing in the
output dots was smaller than that in the input dots. The ob-
servation of larger amplitude in the output dot in the current
device, in agreement with theory, confirms a more complete
polarization change in the output dots than observed in pre-
vious experiments.

In conclusion, we have presented externally measured
charging diagram of a leadless double dot and QCA opera-
tion in a leadless QCA cell. We have shown that the leadless
dot design is simpler than the previous devices with leads
and it can greatly simplify the fabrication of large QCA ar-
rays. We have also shown that the leadless design results in
better QCA performance in terms of output polarization
change. A
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